青衣 发表于 2021-8-8 13:17:02

Kalman算法C++实现代码(编译运行通过)

特别注意:
sudo apt-get install cmake libgtk2.0-dev pkg-config

[*]gh_kalman.h
#ifndef __KALMAN_H__
#define __KALMAN_H__

#include <iostream>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

class KALMAN
{
public:
    KALMAN(int state_size, int mea_size);
    ~KALMAN();

public:
    Mat statePre;            //预测状态矩阵(x'(k)) x(k) = A*x(k - 1) + B * u(k)
    Mat statePost;         //状态估计修正矩阵(x(k)) x(k) = x'(k) + K(k)*(z(k) - H * x'(k)) : 1 * 8
    Mat transitionMatrix;    //转移矩阵(A): 8 * 8
    Mat controMatrix;      //控制矩阵(B)
    Mat measurementMatrix;   //测量矩阵(H) :4 * 8
    Mat processNoiseCov;   //预测模型噪声协方差矩阵(Q) :8 * 8
    Mat measurementNoiseCov; //测量噪声协方差矩阵(R): 4 * 4
    Mat errorCovPre;         //转移噪声矩阵(P'(k)) p'(k) = A * p(k - 1) * At + Q
    Mat K;                   //kalman增益矩阵 K = p'(k) * Ht * inv(H * p'(k) * Ht + R)
    Mat errorCovPost;      //转移噪声修正矩阵(p(k)) p(k) = (I - K(k) * H) * p'(k): 8 * 8

public:
    void init();
    void update(Mat Y);
    Mat predicted(Mat Y);
};

#endif

[*]gh_kalman.cpp

#include "gh_kalman.h"

KALMAN::KALMAN(int state_size,int mea_size)
{
    transitionMatrix    = Mat::zeros(state_size, state_size, CV_32F);
    measurementMatrix   = Mat::zeros(mea_size,   state_size, CV_32F);
    processNoiseCov   = Mat::zeros(state_size, state_size, CV_32F);
    measurementNoiseCov = Mat::zeros(mea_size,   mea_size,   CV_32F);
    errorCovPre         = Mat::zeros(state_size, state_size, CV_32F);
    errorCovPost      = Mat::zeros(state_size, state_size, CV_32F);
    statePost         = Mat::zeros(state_size, 1,          CV_32F);
    statePre            = Mat::zeros(state_size, 1,          CV_32F);
    K                   = Mat::zeros(state_size, mea_size,   CV_32F);
}

KALMAN::~KALMAN()
{
    //
}

void KALMAN::init()
{
    setIdentity(measurementMatrix,   Scalar::all(1));   //观测矩阵的初始化;
    setIdentity(processNoiseCov,   Scalar::all(1e-5));//模型本身噪声协方差矩阵初始化;
    setIdentity(measurementNoiseCov, Scalar::all(1e-1));//测量噪声的协方差矩阵初始化
    setIdentity(errorCovPost,      Scalar::all(1));   //转移噪声修正矩阵初始化
    randn(statePost,Scalar::all(0),Scalar::all(5));   //kalaman状态估计修正矩阵初始化
}

void KALMAN::update(Mat Y)
{
    K            = errorCovPre * (measurementMatrix.t()) * ((measurementMatrix * errorCovPre * measurementMatrix.t() + measurementNoiseCov).inv());
    statePost    = statePre    + K * (Y - measurementMatrix * statePre);
    errorCovPost = errorCovPre - K * measurementMatrix * errorCovPre;
}

Mat KALMAN::predicted(Mat Y)
{

    statePre    = transitionMatrix * statePost;
    errorCovPre = transitionMatrix * errorCovPost * transitionMatrix.t() + processNoiseCov;

    update(Y);

    return statePost;
}


[*]gh_test.cpp

#include "gh_kalman.h"


#define WINDOW_NAME "Kalman"
#define BUFFER_SIZE512
const int winWidth= 800;
const int winHeight = 600;

Point mousePosition = Point(winWidth >> 1, winHeight >> 1);

//mouse call back
void mouseEvent(int event, int x, int y, int flags, void *param)
{
    if (event == CV_EVENT_MOUSEMOVE)
    {
      mousePosition = Point(x, y);
    }
}

int main(int argc, char** argv)
{
    int state_size = 4;
    int mea_size   = 2;
    KALMAN kalman(state_size,mea_size);

    kalman.init();
    kalman.transitionMatrix = (Mat_<float>(4, 4) <<
      1, 0, 1, 0,
      0, 1, 0, 1,
      0, 0, 1, 0,
      0, 0, 0, 1);//元素导入矩阵,按行;

    Mat g_srcImage;
    Mat showImg(winWidth, winHeight, CV_8UC3);
    Mat measurement(mea_size,1,CV_32F);

    for (;;)
    {
      setMouseCallback(WINDOW_NAME, mouseEvent, 0);
      showImg.setTo(0);

      Point statePt = Point((int)kalman.statePost.at<float>(0), (int)kalman.statePost.at<float>(1));

      //3.update measurement
      measurement.at<float>(0) = (float)mousePosition.x;
      measurement.at<float>(1) = (float)mousePosition.y;

      //2.kalman prediction   
      Mat   prediction= kalman.predicted(measurement);
      Point predictPt   = Point((int)prediction.at<float>(0), (int)prediction.at<float>(1));


      //randn( processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));
      //state = KF.transitionMatrix*state + processNoise;
      //draw
      circle(showImg, statePt,       5, CV_RGB(255,   0,   0), 1);//former point
      circle(showImg, predictPt,   5, CV_RGB(0, 255,   0), 1);//predict point
      circle(showImg, mousePosition, 5, CV_RGB(0,   0, 255), 1);//ture point

      //          CvFont font;//字体
      //          cvInitFont(&font, CV_FONT_HERSHEY_SCRIPT_COMPLEX, 0.5f, 0.5f, 0, 1, 8);
      char buf;
      sprintf(buf, "Green:predicted position:(%3d,%3d)", predictPt.x, predictPt.y);
      //putText(showImg, "Red: Former Point", cvPoint(10, 30), FONT_HERSHEY_SIMPLEX, 1, Scalar::all(255));
      putText(showImg, buf, cvPoint(10, 60), FONT_HERSHEY_SIMPLEX, 1, Scalar::all(255));
      sprintf(buf, "true position:(%3d,%3d)", mousePosition.x, mousePosition.y);
      putText(showImg, buf, cvPoint(10, 90), FONT_HERSHEY_SIMPLEX, 1, Scalar::all(255));

      imshow(WINDOW_NAME, showImg);
      int key = waitKey(3);
      if (key == 27)
      {
            break;
      }
    }

    return 0;
}


[*]编译
有两个问题要注意:
opencv的编译。如果提示Exception,重新编译opencv。
需要的cv库:
-L /usr/local/lib -lopencv_core -lopencv_highgui -lopencv_imgproc -lopencv_imgcodecs


文档来源:51CTO技术博客https://blog.51cto.com/u_13161667/3309489
页: [1]
查看完整版本: Kalman算法C++实现代码(编译运行通过)