本地jvm执行flink程序带web ui的操作
本地jvm执行flink带web ui使用
StreamExecutionEnvironment executionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment();
可以获取flink执行环境。但是本地jvm执行的时候是不带web ui的。有时候出于监控的考虑,需要带着监控页面查看。任务运行状况,可以使用下面方式获取flink本地执行环境,并带有web ui。
Configuration config = new Configuration();
config.setInteger(RestOptions.PORT,9998);
StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(config);
Flink 本地执行入门
一、maven依赖
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<flink.version>1.6.3</flink.version>
<java.version>1.8</java.version>
<scala.version>2.11.8</scala.version>
<hbase.version>1.2.4</hbase.version>
<scala.binary.version>2.11</scala.binary.version>
<maven.compiler.source>${java.version}</maven.compiler.source>
<maven.compiler.target>${java.version}</maven.compiler.target>
</properties>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
二、本地执行
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.common.JobExecutionResult;
import org.apache.flink.api.java.ExecutionEnvironment;
public class FlinkReadTextFile {
public static void main(String[] args) throws Exception {
ExecutionEnvironment env = ExecutionEnvironment.createLocalEnvironment();
DataSet<String> data = env.readTextFile("file:///Users/***/Documents/test.txt");
data.filter(new FilterFunction<String>() {
@Override
public boolean filter(String value) throws Exception {
return value.startsWith("五芳斋美");
}
})
.writeAsText("file:///Users/***/Documents/test01.txt");
JobExecutionResult res = env.execute();
}
}
三、实例
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.scala._
object SocketWindowWordCount {
/** Main program method */
def main(args: Array): Unit ={ // the port to connect to
//val port: Int = try {
// ParameterTool.fromArgs(args).getInt("port")
//} catch {
// case e: Exception => {
// System.err.println("No port specified. Please run 'SocketWindowWordCount --port <port>'")
// return
// }
//}
// get the execution environment
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
// get input data by connecting to the socket
val text = env.socketTextStream("localhost", 9000, '\n')
// parse the data, group it, window it, and aggregate the counts
val windowCounts = text
.flatMap { w => w.split("\\s") }
.map { w => WordWithCount(w, 1) }
.keyBy("word")
.timeWindow(Time.seconds(5), Time.seconds(1))
.sum("count")
// print the results with a single thread, rather than in parallel
windowCounts.print().setParallelism(1)
env.execute("Socket Window WordCount")
}
// Data type for words with count
case class WordWithCount(word: String, count: Long)
}
以上为个人经验,希望能给大家一个参考,也希望大家多多。
原文链接:https://blog.csdn.net/Vector97/article/details/118182173
文档来源:服务器之家http://www.zzvips.com/article/183796.html
页:
[1]