[Kotlin Tutorials 19] Kotlin Flows, SharedFlow and StateFlow in Android
Kotlin Flows本文包含的内容:
[*]Flow是什么, 基本概念和用法.
[*]Flow的不同类型, StateFlow和SharedFlow比较.
[*]Flow在Android中的使用
[*]安全收集.
[*]操作符stateIn, shareIn的用法和区别.
本文被收录在集合中: https://github.com/mengdd/KotlinTutorials
Coroutines Flow Basics
Flow是什么
Flow可以按顺序发送多个值, 概念上是一个数据流, 发射的值必须是同一个类型.
Flow使用suspend方法来生产/消费值, 数据流可以做异步计算.
几个基本知识点:
[*]创建flow: 通过flow builders
[*]Flow数据流通过emit()来发射元素.
[*]可以通过各种操作符对flow的数据进行处理. 注意中间的操作符都不会触发flow的数据发送.
[*]Flow默认是cold flow, 即需要通过被观察才能激活, 最常用的操作符是collect().
[*]Flow的CoroutineContext, 不指定的情况下是collect()的CoroutineContext, 如果想要更改, 用flowOn
改之前的.
关于Flow的基本用法, 19年底写的这篇coroutines flow in Android可以温故知新.
Flow的操作符
一个Flow操作符的可视化小网站: FlowMarbles.
Flow的不同类型
SharedFlow and StateFlow
应用程序里比较常用的类型是SharedFlow和StateFlow.
Android官方有一篇专门的文档来介绍二者: StateFlow and SharedFlow
StateFlow继承于SharedFlow, SharedFlow继承于Flow.
基本关系如下:
[*]Flow
基类. Cold.
Flow的两大特性: Context preservation; Exception transparency.
[*]SharedFlow
继承Flow, 是一种hot flow, 所有collectors共享它的值, 永不终止, 是一种广播的方式.
一个shared flow上的活跃collector被叫作subscriber.
在sharedFlow上的collect call永远不会正常complete, 还有Flow.launchIn.
可以配置replay and buffer overflow strategy.
如果subscriber suspend了, sharedflow会suspend这个stream, buffer这个要发射的元素, 等待subscriber resume.
Because onBufferOverflow is set with BufferOverflow.SUSPEND, the flow will suspend until it can deliver the event to all subscribers.
默认参数:
public fun <T> MutableSharedFlow(
replay: Int = 0,
extraBufferCapacity: Int = 0,
onBufferOverflow: BufferOverflow = BufferOverflow.SUSPEND
)
total buffer是: replay + extraBufferCapacity.
如果total buffer是0, 那么onBufferOverflow只能是onBufferOverflow = BufferOverflow.SUSPEND.
关于reply和buffer, 这个文章
有详细的解释, 并且配有动图.
[*]StateFlow
继承SharedFlow, hot flow, 和是否有collector收集无关, 永不complete.
可以通过value属性访问当前值.
有conflated特性, 会跳过太快的更新, 永远返回最新值.
Strong equality-based conflation: 会通过equals()来判断值是否发生改变, 如果没有改变, 则不会通知collector.
因为conflated的特性, StateFlow赋值的时候要注意使用不可变的值.
cold vs hot
cold stream 可以重复收集, 每次收集, 会对每一个收集者单独开启一次.
hot stream 永远发射不同的值, 和是否有人收集无关, 永远不会终止.
[*]sharedIn
可以把cold flow转成hot的SharedFlow.
[*]stateIn
可以把cold flow转成hot的StateFlow.
StateFlow vs SharedFlow
共性:
[*]StateFlow和SharedFlow永远都不会停止. 不能指望它们的onCompletionCallback.
不同点:
[*]StateFlow可以通过value属性读到最新的值, 但SharedFlow却不行.
[*]StateFlow是conflated: 如果新的值和旧的值一样, 不会传播.
[*]SharedFlow需要合理设置buffer和replay策略.
互相转换:
SharedFlow用了distinctUntilChanged以后变成StateFlow.
// MutableStateFlow(initialValue) is a shared flow with the following parameters:
val shared = MutableSharedFlow(
replay = 1,
onBufferOverflow = BufferOverflow.DROP_OLDEST
)
shared.tryEmit(initialValue) // emit the initial value
val state = shared.distinctUntilChanged() // get StateFlow-like behavior
RxJava的等价替代:
[*]PublishSubject -> SharedFlow.
[*]BehaviorSubject -> StateFlow.
Use Flow in Android
发送事件(Event或Effects): SharedFlow
因为SharedFlow没有conflated特性, 所以适合发送事件, 即便值变化得快也是每个都发送.
private val _sharedViewEffects = MutableSharedFlow<SharedViewEffects>() // 1
val sharedViewEffects = _sharedViewEffects.asSharedFlow() // 2
这里用了asSharedFlow来创建一个ReadonlySharedFlow.
SharedFlow发射元素有两个方法:
[*]emit: suspend方法.
[*]tryEmit: 非suspend方法.
因为tryEmit是非suspend的, 适用于有buffer的情况.
保存暴露UI状态: StateFlow
StateFlow是一个state-holder, 可以通过value读到当前状态值.
一般会有一个MutableStateFlow类型的Backing property.
StateFlow是hot的, collect并不会触发producer code.
当有新的consumer时, 新的consumer会接到上次的状态和后续的状态.
使用StateFlow时, 发射新元素只需要赋值:
mutableState.value = newState
注意这里新值和旧的值要equals判断不相等才能发射出去.
StateFlow vs LiveData
StateFlow和LiveData很像.
StateFlow和LiveData的相同点:
[*]永远有一个值.
[*]只有一个值.
[*]支持多个观察者.
[*]在订阅的瞬间, replay最新的值.
有一点点不同:
[*]StateFlow需要一个初始值.
[*]LiveData会自动解绑, flow要达到相同效果, collect要在Lifecycle.repeatOnLifecycle里.
Flow的安全收集
关于收集Flow的方法, 主要还是关注一下生命周期的问题, 因为SharedFlow和StateFlow都是hot的.
在这个文章里有详细的讨论: A safer way to collect flows from Android UIs
在UI层收集的时候注意要用repeatOnLifecycle:
class LatestNewsActivity : AppCompatActivity() {
private val latestNewsViewModel = // getViewModel()
override fun onCreate(savedInstanceState: Bundle?) {
//...
// Start a coroutine in the lifecycle scope
lifecycleScope.launch {
// repeatOnLifecycle launches the block in a new coroutine every time the
// lifecycle is in the STARTED state (or above) and cancels it when it's STOPPED.
repeatOnLifecycle(Lifecycle.State.STARTED) {
// Trigger the flow and start listening for values.
// Note that this happens when lifecycle is STARTED and stops
// collecting when the lifecycle is STOPPED
latestNewsViewModel.uiState.collect { uiState ->
// New value received
when (uiState) {
is LatestNewsUiState.Success -> showFavoriteNews(uiState.news)
is LatestNewsUiState.Error -> showError(uiState.exception)
}
}
}
}
}
}
这个文章里有个扩展方法也挺好的:
class FlowObserver<T> (
lifecycleOwner: LifecycleOwner,
private val flow: Flow<T>,
private val collector: suspend (T) -> Unit
) {
private var job: Job? = null
init {
lifecycleOwner.lifecycle.addObserver(LifecycleEventObserver {
source: LifecycleOwner, event: Lifecycle.Event ->
when (event) {
Lifecycle.Event.ON_START -> {
job = source.lifecycleScope.launch {
flow.collect { collector(it) }
}
}
Lifecycle.Event.ON_STOP -> {
job?.cancel()
job = null
}
else -> { }
}
})
}
}
inline fun <reified T> Flow<T>.observeOnLifecycle(
lifecycleOwner: LifecycleOwner,
noinline collector: suspend (T) -> Unit
) = FlowObserver(lifecycleOwner, this, collector)
inline fun <reified T> Flow<T>.observeInLifecycle(
lifecycleOwner: LifecycleOwner
) = FlowObserver(lifecycleOwner, this, {})
看了一下官方的repeatOnLifecycle其实大概也是这个意思:
public suspend fun Lifecycle.repeatOnLifecycle(
state: Lifecycle.State,
block: suspend CoroutineScope.() -> Unit
) {
require(state !== Lifecycle.State.INITIALIZED) {
"repeatOnLifecycle cannot start work with the INITIALIZED lifecycle state."
}
if (currentState === Lifecycle.State.DESTROYED) {
return
}
// This scope is required to preserve context before we move to Dispatchers.Main
coroutineScope {
withContext(Dispatchers.Main.immediate) {
// Check the current state of the lifecycle as the previous check is not guaranteed
// to be done on the main thread.
if (currentState === Lifecycle.State.DESTROYED) return@withContext
// Instance of the running repeating coroutine
var launchedJob: Job? = null
// Registered observer
var observer: LifecycleEventObserver? = null
try {
// Suspend the coroutine until the lifecycle is destroyed or
// the coroutine is cancelled
suspendCancellableCoroutine<Unit> { cont ->
// Lifecycle observers that executes `block` when the lifecycle reaches certain state, and
// cancels when it falls below that state.
val startWorkEvent = Lifecycle.Event.upTo(state)
val cancelWorkEvent = Lifecycle.Event.downFrom(state)
val mutex = Mutex()
observer = LifecycleEventObserver { _, event ->
if (event == startWorkEvent) {
// Launch the repeating work preserving the calling context
launchedJob = this@coroutineScope.launch {
// Mutex makes invocations run serially,
// coroutineScope ensures all child coroutines finish
mutex.withLock {
coroutineScope {
block()
}
}
}
return@LifecycleEventObserver
}
if (event == cancelWorkEvent) {
launchedJob?.cancel()
launchedJob = null
}
if (event == Lifecycle.Event.ON_DESTROY) {
cont.resume(Unit)
}
}
this@repeatOnLifecycle.addObserver(observer as LifecycleEventObserver)
}
} finally {
launchedJob?.cancel()
observer?.let {
this@repeatOnLifecycle.removeObserver(it)
}
}
}
}
}
既然官方已经推出了, 我们就用官方的repeatOnLifecycle方法吧.
shareIn和stateIn
前面提过这两个操作符是用来做flow转换的:
[*]sharedIn
可以把cold flow转成hot的SharedFlow.
[*]stateIn
可以把cold flow转成hot的StateFlow.
shareIn可以保证只有一个数据源被创造, 并且被所有collectors收集.
比如:
class LocationRepository(
private val locationDataSource: LocationDataSource,
private val externalScope: CoroutineScope
) {
val locations: Flow<Location> =
locationDataSource.locationsSource.shareIn(externalScope, WhileSubscribed())
}
WhileSubscribed这个策略是说, 当无人观测时, 上游的flow就被取消.
实际使用时可以用WhileSubscribed(5000), 让上游的flow即便在无人观测的情况下, 也能继续保持5秒.
这样可以在某些情况(比如旋转屏幕)时避免重建上游资源, 适用于上游资源创建起来很expensive的情况.
如果我们的需求是, 永远保持一个最新的cache值.
class LocationRepository(
private val locationDataSource: LocationDataSource,
private val externalScope: CoroutineScope
) {
val locations: Flow<Location> =
locationDataSource.locationsSource.stateIn(externalScope, WhileSubscribed(), EmptyLocation)
}
Flow.stateIn将会缓存最后一个值, 并且有新的collector时, 将这个最新值传给它.
shareIn, stateIn使用注意事项
永远不要在方法里面调用shareIn和stateIn, 因为方法每次被调用, 它们都会创建新的流.
这些流没有被复用, 会存在内存里面, 直到scope被取消或者没有引用时被GC.
推荐的使用方式是在property上用:
class UserRepository(
private val userLocalDataSource: UserLocalDataSource,
private val externalScope: CoroutineScope
) {
// DO NOT USE shareIn or stateIn in a function like this.
// It creates a new SharedFlow/StateFlow per invocation which is not reused!
fun getUser(): Flow<User> =
userLocalDataSource.getUser()
.shareIn(externalScope, WhileSubscribed())
// DO USE shareIn or stateIn in a property
val user: Flow<User> =
userLocalDataSource.getUser().shareIn(externalScope, WhileSubscribed())
}
StateFlow使用总结
从ViewModel暴露数据到UI, 用StateFlow的两种方式:
[*]暴露一个StateFlow属性, 用WhileSubscribed加上一个timeout.
class MyViewModel(...) : ViewModel() {
val result = userId.mapLatest { newUserId ->
repository.observeItem(newUserId)
}.stateIn(
scope = viewModelScope,
started = WhileSubscribed(5000),
initialValue = Result.Loading
)
}
[*]用repeatOnLifecycle收集.
onCreateView(...) {
viewLifecycleOwner.lifecycleScope.launch {
viewLifecycleOwner.lifecycle.repeatOnLifecycle(STARTED) {
myViewModel.myUiState.collect { ... }
}
}
}
其他的组合都会保持上游的活跃, 浪费资源:
[*]用WhileSubscribed暴露属性, 在lifecycleScope.launch/launchWhenX里收集.
[*]通过Lazily/Eagerly暴露, 用repeatOnLifecycle收集.
References
[*]Kotlin flows on Android
[*]StateFlow and SharedFlow
[*]A safer way to collect flows from Android UIs
[*]Things to know about Flow’s shareIn and stateIn operators
[*]Shared flows, broadcast channels
[*]Kotlin SharedFlow or: How I learned to stop using RxJava and love the Flow
[*]Migrating from LiveData to Kotlin’s Flow
[*]Substituting Android’s LiveData: StateFlow or SharedFlow?
[*]Learning State & Shared Flows with Unit Tests
[*]Reactive Streams on Kotlin: SharedFlow and StateFlow
[*]Reading Coroutine official guide thoroughly — Part 0
文档来源:网络转载 https://www.cnblogs.com/mengdd/p/kotlin-flows.html
页:
[1]