MapTask阶段shuffle源码分析
今天小编就为大家分享一篇关于MapTask阶段shuffle源码分析,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧1. 收集阶段
在mapper中,调用context.write(key,value)实际是调用代理newoutputcollector的wirte方法
public void write(keyout key, valueout value
) throws ioexception, interruptedexception {
output.write(key, value);
}
实际调用的是mapoutputbuffer的collect(),在进行收集前,调用partitioner来计算每个key-value的分区号
@override
public void write(k key, v value) throws ioexception, interruptedexception {
collector.collect(key, value,
partitioner.getpartition(key, value, partitions));
}
2. newoutputcollector对象的创建
@suppresswarnings("unchecked")
newoutputcollector(org.apache.hadoop.mapreduce.jobcontext jobcontext,
jobconf job,
taskumbilicalprotocol umbilical,
taskreporter reporter
) throws ioexception, classnotfoundexception {
// 创建实际用来收集key-value的缓存区对象
collector = createsortingcollector(job, reporter);
// 获取总的分区个数
partitions = jobcontext.getnumreducetasks();
if (partitions > 1) {
partitioner = (org.apache.hadoop.mapreduce.partitioner<k,v>)
reflectionutils.newinstance(jobcontext.getpartitionerclass(), job);
} else {
// 默认情况,直接创建一个匿名内部类,所有的key-value都分配到0号分区
partitioner = new org.apache.hadoop.mapreduce.partitioner<k,v>() {
@override
public int getpartition(k key, v value, int numpartitions) {
return partitions - 1;
}
};
}
}
3. 创建环形缓冲区对象
@suppresswarnings("unchecked")
private <key, value> mapoutputcollector<key, value>
createsortingcollector(jobconf job, taskreporter reporter)
throws ioexception, classnotfoundexception {
mapoutputcollector.context context =
new mapoutputcollector.context(this, job, reporter);
// 从当前job的配置中,获取mapreduce.job.map.output.collector.class,如果没有设置,使用mapoutputbuffer.class
class<?>[] collectorclasses = job.getclasses(
jobcontext.map_output_collector_class_attr, mapoutputbuffer.class);
int remainingcollectors = collectorclasses.length;
exception lastexception = null;
for (class clazz : collectorclasses) {
try {
if (!mapoutputcollector.class.isassignablefrom(clazz)) {
throw new ioexception("invalid output collector class: " + clazz.getname() +
" (does not implement mapoutputcollector)");
}
class<? extends mapoutputcollector> subclazz =
clazz.assubclass(mapoutputcollector.class);
log.debug("trying map output collector class: " + subclazz.getname());
// 创建缓冲区对象
mapoutputcollector<key, value> collector =
reflectionutils.newinstance(subclazz, job);
// 创建完缓冲区对象后,执行初始化
collector.init(context);
log.info("map output collector class = " + collector.getclass().getname());
return collector;
} catch (exception e) {
string msg = "unable to initialize mapoutputcollector " + clazz.getname();
if (--remainingcollectors > 0) {
msg += " (" + remainingcollectors + " more collector(s) to try)";
}
lastexception = e;
log.warn(msg, e);
}
}
throw new ioexception("initialization of all the collectors failed. " +
"error in last collector was :" + lastexception.getmessage(), lastexception);
}
3. mapoutputbuffer的初始化 环形缓冲区对象
@suppresswarnings("unchecked")
public void init(mapoutputcollector.context context
) throws ioexception, classnotfoundexception {
job = context.getjobconf();
reporter = context.getreporter();
maptask = context.getmaptask();
mapoutputfile = maptask.getmapoutputfile();
sortphase = maptask.getsortphase();
spilledrecordscounter = reporter.getcounter(taskcounter.spilled_records);
// 获取分区总个数,取决于reducetask的数量
partitions = job.getnumreducetasks();
rfs = ((localfilesystem)filesystem.getlocal(job)).getraw();
//sanity checks
// 从当前配置中,获取mapreduce.map.sort.spill.percent,如果没有设置,就是0.8
final float spillper =
job.getfloat(jobcontext.map_sort_spill_percent, (float)0.8);
// 获取mapreduce.task.io.sort.mb,如果没设置,就是100mb
final int sortmb = job.getint(jobcontext.io_sort_mb, 100);
indexcachememorylimit = job.getint(jobcontext.index_cache_memory_limit,
index_cache_memory_limit_default);
if (spillper > (float)1.0 || spillper <= (float)0.0) {
throw new ioexception("invalid \"" + jobcontext.map_sort_spill_percent +
"\": " + spillper);
}
if ((sortmb & 0x7ff) != sortmb) {
throw new ioexception(
"invalid \"" + jobcontext.io_sort_mb + "\": " + sortmb);
}
// 在溢写前,对key-value排序,采用的排序器,使用快速排序,只排索引
sorter = reflectionutils.newinstance(job.getclass("map.sort.class",
quicksort.class, indexedsorter.class), job);
// buffers and accounting
int maxmemusage = sortmb << 20;
maxmemusage -= maxmemusage % metasize;
// 存放key-value
kvbuffer = new byte;
bufvoid = kvbuffer.length;
// 存储key-value的属性信息,分区号,索引等
kvmeta = bytebuffer.wrap(kvbuffer)
.order(byteorder.nativeorder())
.asintbuffer();
setequator(0);
bufstart = bufend = bufindex = equator;
kvstart = kvend = kvindex;
maxrec = kvmeta.capacity() / nmeta;
softlimit = (int)(kvbuffer.length * spillper);
bufferremaining = softlimit;
log.info(jobcontext.io_sort_mb + ": " + sortmb);
log.info("soft limit at " + softlimit);
log.info("bufstart = " + bufstart + "; bufvoid = " + bufvoid);
log.info("kvstart = " + kvstart + "; length = " + maxrec);
// k/v serialization
// 获取快速排序的key的比较器,排序只按照key进行排序!
comparator = job.getoutputkeycomparator();
// 获取key-value的序列化器
keyclass = (class<k>)job.getmapoutputkeyclass();
valclass = (class<v>)job.getmapoutputvalueclass();
serializationfactory = new serializationfactory(job);
keyserializer = serializationfactory.getserializer(keyclass);
keyserializer.open(bb);
valserializer = serializationfactory.getserializer(valclass);
valserializer.open(bb);
// output counters
mapoutputbytecounter = reporter.getcounter(taskcounter.map_output_bytes);
mapoutputrecordcounter =
reporter.getcounter(taskcounter.map_output_records);
fileoutputbytecounter = reporter
.getcounter(taskcounter.map_output_materialized_bytes);
// 溢写到磁盘,可以使用一个压缩格式! 获取指定的压缩编解码器
// compression
if (job.getcompressmapoutput()) {
class<? extends compressioncodec> codecclass =
job.getmapoutputcompressorclass(defaultcodec.class);
codec = reflectionutils.newinstance(codecclass, job);
} else {
codec = null;
}
// 获取combiner组件
// combiner
final counters.counter combineinputcounter =
reporter.getcounter(taskcounter.combine_input_records);
combinerrunner = combinerrunner.create(job, gettaskid(),
combineinputcounter,
reporter, null);
if (combinerrunner != null) {
final counters.counter combineoutputcounter =
reporter.getcounter(taskcounter.combine_output_records);
combinecollector= new combineoutputcollector<k,v>(combineoutputcounter, reporter, job);
} else {
combinecollector = null;
}
spillinprogress = false;
minspillsforcombine = job.getint(jobcontext.map_combine_min_spills, 3);
// 设置溢写线程在后台运行,溢写是在后台运行另外一个溢写线程!和收集是两个线程!
spillthread.setdaemon(true);
spillthread.setname("spillthread");
spilllock.lock();
try {
// 启动线程
spillthread.start();
while (!spillthreadrunning) {
spilldone.await();
}
} catch (interruptedexception e) {
throw new ioexception("spill thread failed to initialize", e);
} finally {
spilllock.unlock();
}
if (sortspillexception != null) {
throw new ioexception("spill thread failed to initialize",
sortspillexception);
}
}
4. paritionner的获取
从配置中读取mapreduce.job.partitioner.class,如果没有指定,采用hashpartitioner.class
如果reducetask > 1, 还没有设置分区组件,使用hashpartitioner
@suppresswarnings("unchecked")
public class<? extends partitioner<?,?>> getpartitionerclass()
throws classnotfoundexception {
return (class<? extends partitioner<?,?>>)
conf.getclass(partitioner_class_attr, hashpartitioner.class);
}
public class hashpartitioner<k, v> extends partitioner<k, v> {
/** use {@link object#hashcode()} to partition. **/
public int getpartition(k key, v value,
int numreducetasks) {
return (key.hashcode() & integer.max_value) % numreducetasks;
}
}
分区号的限制:0 <= 分区号 < 总的分区数(reducetask的个数)
if (partition < 0 || partition >= partitions) {
throw new ioexception("illegal partition for " + key + " (" +
partition + ")");
}
5.maptask shuffle的流程
①在map()调用context.write()
②调用mapoutputbuffer的collect()
[*] 调用分区组件partitionner计算当前这组key-value的分区号
③将当前key-value收集到mapoutputbuffer中
[*] 如果超过溢写的阀值,在后台启动溢写线程,来进行溢写!
④溢写前,先根据分区号,将相同分区号的key-value,采用快速排序算法,进行排序!
[*] 排序并不在内存中移动key-value,而是记录排序后key-value的有序索引!
⑤ 开始溢写,按照排序后有序的索引,将文件写入到一个临时的溢写文件中
[*] 如果没有定义combiner,直接溢写!
[*] 如果定义了combiner,使用combinerrunner.conbine()对key-value处理后再次溢写!
⑥多次溢写后,每次溢写都会产生一个临时文件
⑦最后,执行一次flush(),将剩余的key-value进行溢写
⑧mergeparts: 将多次溢写的结果,保存为一个总的文件!
[*] 在合并为一个总的文件前,会执行归并排序,保证合并后的文件,各个分区也是有序的!
[*] 如果定义了conbiner,conbiner会再次运行(前提是溢写的文件个数大于3)!
[*] 否则,就直接溢写!
⑨最终保证生成一个最终的文件,这个文件根据总区号,分为若干部分,每个部分的key-value都已经排好序,等待reducetask来拷贝相应分区的数据
6. combiner
combiner其实就是reducer类型:
class<? extends reducer<k,v,k,v>> cls =
(class<? extends reducer<k,v,k,v>>) job.getcombinerclass();
combiner的运行时机:
maptask:
[*] ①每次溢写前,如果指定了combiner,会运行
[*] ②将多个溢写片段,进行合并为一个最终的文件时,也会运行combiner,前提是片段数>=3
reducetask:
③reducetask在运行时,需要启动shuffle进程拷贝maptask产生的数据!
[*] 数据在copy后,进入shuffle工作的内存,在内存中进行merge和sort!
[*] 数据过多,内部不够,将部分数据溢写在磁盘!
[*] 如果有溢写的过程,那么combiner会再次运行!
①一定会运行,②,③需要条件!
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对CodeAE代码之家的支持。如果你想了解更多相关内容请查看下面相关链接
原文链接:https://blog.csdn.net/qq_43193797/article/details/86097451
http://www.zzvips.com/article/174841.html
页:
[1]