Java ArrayList.add 的实现方法
这篇文章主要介绍了Java ArrayList.add 的实现方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧arraylist是平时相当常用的list实现, 其中boolean add(e e) 的实现比较直接:
/**
* appends the specified element to the end of this list.
*
* @param e element to be appended to this list
* @return <tt>true</tt> (as specified by {@link collection#add})
*/
public boolean add(e e) {
ensurecapacityinternal(size + 1); // increments modcount!!
elementdata = e;
return true;
}
有时候也使用 void add(int index, e element) 把元素插入到指定的index上. 在jdk中的实现是:
/**
* inserts the specified element at the specified position in this
* list. shifts the element currently at that position (if any) and
* any subsequent elements to the right (adds one to their indices).
*
* @param index index at which the specified element is to be inserted
* @param element element to be inserted
* @throws indexoutofboundsexception {@inheritdoc}
*/
public void add(int index, e element) {
rangecheckforadd(index);
ensurecapacityinternal(size + 1); // increments modcount!!
system.arraycopy(elementdata, index, elementdata, index + 1,
size - index);
elementdata = element;
size++;
}
略有差别, 需要保证当前elementdata 数组容量够用, 然后把从index处一直到尾部的数组元素都向后挪一位. 最后把要插入的元素赋给数组的index处.
一直以来, 我都认为 system.arraycopy 这个native方法, 它的c++实现是调用底层的memcpy, 直接方便, 效率也没问题.
但今天看了openjdk的源码发现并非如此.
以openjdk8u60 为例, 在objarrayklass.cpp 中:
void objarrayklass::copy_array(arrayoop s, int src_pos, arrayoop d,
int dst_pos, int length, traps) {
assert(s->is_objarray(), "must be obj array");
if (!d->is_objarray()) {
throw(vmsymbols::java_lang_arraystoreexception());
}
// check is all offsets and lengths are non negative
if (src_pos < 0 || dst_pos < 0 || length < 0) {
throw(vmsymbols::java_lang_arrayindexoutofboundsexception());
}
// check if the ranges are valid
if ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length())
|| (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) {
throw(vmsymbols::java_lang_arrayindexoutofboundsexception());
}
// special case. boundary cases must be checked first
// this allows the following call: copy_array(s, s.length(), d.length(), 0).
// this is correct, since the position is supposed to be an 'in between point', i.e., s.length(),
// points to the right of the last element.
if (length==0) {
return;
}
if (usecompressedoops) {
narrowoop* const src = objarrayoop(s)->obj_at_addr<narrowoop>(src_pos);
narrowoop* const dst = objarrayoop(d)->obj_at_addr<narrowoop>(dst_pos);
do_copy<narrowoop>(s, src, d, dst, length, check);
} else {
oop* const src = objarrayoop(s)->obj_at_addr<oop>(src_pos);
oop* const dst = objarrayoop(d)->obj_at_addr<oop>(dst_pos);
do_copy<oop> (s, src, d, dst, length, check);
}
}
可以看到copy_array在做了各种检查之后, 最终copy的部分在do_copy方法中, 而这个方法实现如下:
// either oop or narrowoop depending on usecompressedoops.
template <class t> void objarrayklass::do_copy(arrayoop s, t* src,
arrayoop d, t* dst, int length, traps) {
barrierset* bs = universe::heap()->barrier_set();
// for performance reasons, we assume we are that the write barrier we
// are using has optimized modes for arrays of references. at least one
// of the asserts below will fail if this is not the case.
assert(bs->has_write_ref_array_opt(), "barrier set must have ref array opt");
assert(bs->has_write_ref_array_pre_opt(), "for pre-barrier as well.");
if (s == d) {
// since source and destination are equal we do not need conversion checks.
assert(length > 0, "sanity check");
bs->write_ref_array_pre(dst, length);
copy::conjoint_oops_atomic(src, dst, length);
} else {
// we have to make sure all elements conform to the destination array
klass* bound = objarrayklass::cast(d->klass())->element_klass();
klass* stype = objarrayklass::cast(s->klass())->element_klass();
if (stype == bound || stype->is_subtype_of(bound)) {
// elements are guaranteed to be subtypes, so no check necessary
bs->write_ref_array_pre(dst, length);
copy::conjoint_oops_atomic(src, dst, length);
} else {
// slow case: need individual subtype checks
// note: don't use obj_at_put below because it includes a redundant store check
t* from = src;
t* end = from + length;
for (t* p = dst; from < end; from++, p++) {
// xxx this is going to be slow.
t element = *from;
// even slower now
bool element_is_null = oopdesc::is_null(element);
oop new_val = element_is_null ? oop(null)
: oopdesc::decode_heap_oop_not_null(element);
if (element_is_null ||
(new_val->klass())->is_subtype_of(bound)) {
bs->write_ref_field_pre(p, new_val);
*p = element;
} else {
// we must do a barrier to cover the partial copy.
const size_t pd = pointer_delta(p, dst, (size_t)heapoopsize);
// pointer delta is scaled to number of elements (length field in
// objarrayoop) which we assume is 32 bit.
assert(pd == (size_t)(int)pd, "length field overflow");
bs->write_ref_array((heapword*)dst, pd);
throw(vmsymbols::java_lang_arraystoreexception());
return;
}
}
}
}
bs->write_ref_array((heapword*)dst, length);
}
可以看到, 在设定了heap barrier之后, 元素是在for循环中被一个个挪动的. 做的工作比我想象的要多.
如果有m个元素, 按照给定位置, 使用arraylist.add(int,e)逐个插入到一个长度为n的arraylist中, 复杂度应当是o(m*n), 或者o(m*(m+n)), 所以, 如果m和n都不小的话, 效率确实是不高的.
效率高一些的方法是, 建立m+n长度的数组或arraylist, 在给定位置赋值该m个要插入的元素, 其他位置依次赋值原n长度list的元素. 这样时间复杂度应当是o(m+n).
还有, 在前面的实现中, 我们可以看到有对ensurecapacityinternal(int) 的调用. 这个保证数组容量的实现主要在:
/**
* increases the capacity to ensure that it can hold at least the
* number of elements specified by the minimum capacity argument.
*
* @param mincapacity the desired minimum capacity
*/
private void grow(int mincapacity) {
// overflow-conscious code
int oldcapacity = elementdata.length;
int newcapacity = oldcapacity + (oldcapacity >> 1);
if (newcapacity - mincapacity < 0)
newcapacity = mincapacity;
if (newcapacity - max_array_size > 0)
newcapacity = hugecapacity(mincapacity);
// mincapacity is usually close to size, so this is a win:
elementdata = arrays.copyof(elementdata, newcapacity);
}
大家知道由于效率原因, arraylist容量增长不是正好按照要求的容量mincapacity来设计的, 新容量计算的主要逻辑是: 如果要求容量比当前容量的1.5倍大, 就按照要求容量重新分配空间; 否则按当前容量1.5倍增加. 当然不能超出integer.max_value了. oldcapacity + (oldcapacity >> 1) 实际就是当前容量1.5倍, 等同于(int) (oldcapacity * 1.5), 但因这段不涉及浮点运算只是移位, 显然效率高不少.
所以如果arraylist一个一个add元素的话, 容量是在不够的时候1.5倍增长的. 关于1.5这个数字, 或许是觉得2倍增长太快了吧. 也或许有实验数据的验证支撑.
关于这段代码中出现的arrays.copyof这个方法, 实现的是重新分配一段数组, 把elementdata赋值给新分配的空间, 如果新分配的空间大, 则后面赋值null, 如果分配空间比当前数组小则截断. 底层还是调用的system.arraycopy.
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持CodeAE代码之家。
原文链接:https://segmentfault.com/a/1190000016910760
http://www.zzvips.com/article/170039.html
页:
[1]