百度飞桨学习——七日打卡作业(五)大作业
百度飞桨学习——七日打卡作业(五)大作业这次的作业是百度结营大作业,难度主要在代码小细节方面
主要内容
第一步:爱奇艺《青春有你2》评论数据爬取(参考链接:https://www.iqiyi.com/v_19ryfkiv8w.html#curid=15068699100_9f9bab7e0d1e30c494622af777f4ba39)
[*]爬取任意一期正片视频下评论
[*]评论条数不少于1000条
第二步:词频统计并可视化展示
[*]数据预处理:清理清洗评论中特殊字符(如:@#¥%、emoji表情符),清洗后结果存储为txt文档
[*]中文分词:添加新增词(如:青你、奥利给、冲鸭),去除停用词(如:哦、因此、不然、也好、但是)
[*]统计top10高频词
[*]可视化展示高频词
第三步:绘制词云
[*]根据词频生成词云
[*]可选项-添加背景图片,根据背景图片轮廓生成词云
第四步:结合PaddleHub,对评论进行内容审核
需要的配置和准备
[*]中文分词需要jieba
[*]词云绘制需要wordcloud
[*]可视化展示中需要的中文字体
[*]网上公开资源中找一个中文停用词表
[*]根据分词结果自己制作新增词表
[*]准备一张词云背景图(附加项,不做要求,可用hub抠图实现)
[*]paddlehub配置
环境安装
!pip install jieba
!pip install wordcloud -i https://pypi.tuna.tsinghua.edu.cn/simple
# Linux系统默认字体文件路径
!ls /usr/share/fonts/
# 查看系统可用的ttf格式中文字体
!fc-list :lang=zh | grep ".ttf"
!wget https://mydueros.cdn.bcebos.com/font/simhei.ttf # 下载中文字体
#创建字体目录fonts
!mkdir .fonts
# 复制字体文件到该路径
!cp simhei.ttf .fonts/
#安装模型
!hub install porn_detection_lstm==1.1.0
!pip install --upgrade paddlehub
编写代码
from __future__ import print_function
import requests
import json
import re #正则匹配
import time #时间处理模块
import jieba #中文分词
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.font_manager as font_manager
from PIL import Image
from wordcloud import WordCloud#绘制词云模块
import paddlehub as hub
#请求爱奇艺评论接口,返回response信息
def getMovieinfo(url):
'''
请求爱奇艺评论接口,返回response信息
参数url: 评论的url
:return: response信息
'''
session = requests.Session()
headers = {
"User-Agent":"Mozilla/5.0",
"Accept":"application/json",
"Referer":"http://m.iqiyi.com/v_19rqriflzg.html",
"Origin":"http://m.iqiyi.com",
"Host":"sns-comment.iqiyi.com",
"Connection":"keep-alive",
"Accept-Language":"en-us,en;q=0.9,zh-CN;q=0.8,zh;q=0.7,zh_TW;q=0.6",
"Accept-Encoding":"gzip,deflate"
}
response =session.get(url,headers=headers)
if response.status_code == 200:
return response.text
return None
#解析json数据,获取评论
def saveMovieInfoToFile(lastId,arr):
'''
解析json数据,获取评论
参数lastId:最后一条评论IDarr:存放文本的list
:return: 新的lastId
'''
url = "https://sns-comment.iqiyi.com/v3/comment/get_comments.action?agent_type=118&agent_version=9.11.5&business_type=17&content_id=15068699100&page=&page_size=10&types=time&last_id="
url += str(lastId)
responseTxt = getMovieinfo(url)
responseJson = json.loads(responseTxt)
comments = responseJson['data']['comments']
for val in comments:
if 'content' in val.keys():
# print(val['content'])
arr.append(val['content'])
lastId = str(val['id'])
return lastId
#去除文本中特殊字符
def clear_special_char(content):
'''
正则处理特殊字符
参数 content:原文本
return: 清除后的文本
'''
s = re.sub(r"</?(.+?)>| |\t|\r","",content)
s = re.sub(r"\n"," ",s)
s = re.sub(r"\*","\\*",s)
s = re.sub('[^\u4e00-\u9fa5^a-z^A-Z^0-9]','',s)
s = re.sub('[\001\002\003\004\005\006\007\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a]+','',s)
s = re.sub('','',s)
s = re.sub('^\d+(\.\d+)?$','',s)
return s
def fenci(text):
'''
利用jieba进行分词
参数 text:需要分词的句子或文本
return:分词结果
'''
jieba.load_userdict("add_words.txt")
seg = jieba.lcut(text,cut_all=False)
return seg
def stopwordslist(file_path):
'''
创建停用词表
参数 file_path:停用词文本路径
return:停用词list
'''
stopwords =
return stopwords
def movestopwords(sentence,stopwords,counts):
'''
去除停用词,统计词频
参数 file_path:停用词文本路径 stopwords:停用词list counts: 词频统计结果
return:None
'''
out = []
for word in sentence:
if word not in stopwords:
if len(word) != 1:
counts = counts.get(word,0)+1
return None
def drawcounts(counts,num):
'''
绘制词频统计表
参数 counts: 词频统计结果 num:绘制topN
return:none
'''
x_aixs =[]
y_aixs =[]
c_order = sorted(counts.items(),key=lambda x:x,reverse=True)
for c in c_order[:num]:
x_aixs.append(c)
y_aixs.append(c)
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False
plt.bar(x_aixs,y_aixs)
plt.title('词频统计结果')
plt.show()
#return
def drawcloud(word_f):
'''
根据词频绘制词云图
参数 word_f:统计出的词频结果
return:none
'''
cloud_mask = np.array(Image.open('china.png'))
st = set(["东西","这是"])
wc = WordCloud(background_color='white',
mask=cloud_mask,
max_words=150,
font_path='simhei.ttf',
min_font_size=10,
max_font_size=100,
width=400,
relative_scaling=0.3,
stopwords=st)
#wc.fit_words(word_f)
wc.generate_from_frequencies(word_f)
wc.to_file('pic.png')
def text_detection(text,file_path):
'''
使用hub对评论进行内容分析
return:分析结果
'''
porn_detection_lstm = hub.Module(name="porn_detection_lstm")
f = open('aqy.txt','r',encoding='utf-8')
for line in f:
if len(line.strip())==1:
continue
else:
test_text.append(line)
f.close()
input_dict = {"text":test_text}
results = porn_detection_lstm.detection(data=input_dict,use_gpu=True,batch_size=1)
# print(results)
for index,item in enumerate(results):
if item['porn_detection_key']=='porn':
print(item['text'],':',item['porn_probs'])
#评论是多分页的,得多次请求爱奇艺的评论接口才能获取多页评论,有些评论含有表情、特殊字符之类的
#num 是页数,一页10条评论,假如爬取1000条评论,设置num=100
if __name__ == "__main__":
num = 300
lastId = '0'
arr = [ ]
with open('aqy.txt','a',encoding='utf-8') as f:
for i in range(num):
lastId = saveMovieInfoToFile(lastId,arr)
#for i in arr:
# print("arr的内容是:",i)
##正常运行
time.sleep(0.5)
for item in arr:
Item = clear_special_char(item)
# print("Item的内容是",Item)
# print("Item类型是",type(Item))
if Item.strip()!='':
try:
f.write(Item+'\n')
#print()
exceptException as e:
print(e)
#print("含特殊字符")
print('共取评论:',len(arr))
f = open('aqy.txt','r',encoding='utf-8')
counts = {}
for line in f:
words = fenci(line)
stopwords = stopwordslist('cn_stopwords.txt')
movestopwords(words,stopwords,counts)
#print("counts 的类型是",type(counts))
drawcounts(counts,10)
drawcloud(counts)
f.close()
file_path = 'aqy.txt'
test_text = []
text_detection(test_text,file_path)
display(Image.open('pic.png')) #显示生成的词云图像
https://blog.51cto.com/u_15473262/4848326
页:
[1]