唐伯虎 发表于 2021-7-5 20:08:55

【优化算法】基于matlab粒子群优化灰狼算法【含Matlab源码 006期】

  
一、简介
  灰狼优化算法是最近提出的一种较有竞争力的优化技术.然而,它的位置更新方程存在开发能力强而探索能力弱的缺点.受差分进化和粒子群优化算法的启发,构建一个修改的个体位置更新方程以增强算法的探索能力;受粒子群优化算法的启发,提出一种控制参数a随机动态调整策略.此外,为了提高算法的全局收敛速度,用混沌初始化方法产生初始种群.采用18个高维测试函数进行仿真实验,结果表明:对于绝大多数情形,在相同最大适应度函数评价次数下,本文算法的性能明显优于标准灰狼优化算法.

二、源代码

%%

clear all
clc
close all

SearchAgents_no=30; % Number of search agents

Function_name='F18'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)

Max_iteration=500; % Maximum numbef of iterations

% Load details of the selected benchmark function
=Get_Functions_details(Function_name);

=PSOGWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
=GWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);

figure('Position',)
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel()

%Draw objective space
subplot(1,2,2);
semilogy(PSOGWO_cg_curve,'Color','r')
hold on
semilogy(GWO_cg_curve,'Color','b')
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');

axis tight
grid on
box on
legend('PSOGWO','GWO')

display(['The best solution obtained by PSOGWO is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton found by PSOGWO is : ', num2str(Best_score)]);
display(['The best solution obtained by GWO is : ', num2str(Alpha_pos)]);
display(['The best optimal value of the objective funciton found by GWO is : ', num2str(Alpha_score)]);
      
% This function containts full information and implementations of the benchmark
% functions in Table 1, Table 2, and Table 3 in the paper
% lb is the lower bound: lb=
% up is the uppper bound: ub=
% dim is the number of variables (dimension of the problem)
function = Get_Functions_details(F)
switch F
    case 'F1'
      fobj = @F1;
      lb=-100;
      ub=100;
      dim=30;
      
    case 'F2'
      fobj = @F2;
      lb=-10;
      ub=10;
      dim=30;
      
    case 'F3'
      fobj = @F3;
      lb=-100;
      ub=100;
      dim=30;
      
    case 'F4'
      fobj = @F4;
      lb=-100;
      ub=100;
      dim=30;
      
    case 'F5'
      fobj = @F5;
      lb=-30;
      ub=30;
      dim=30;
      
    case 'F6'
      fobj = @F6;
      lb=-100;
      ub=100;
      dim=30;
      
    case 'F7'
      fobj = @F7;
      lb=-1.28;
      ub=1.28;
      dim=30;
      
    case 'F8'
      fobj = @F8;
      lb=-500;
      ub=500;
      dim=30;
      
    case 'F9'
      fobj = @F9;
      lb=-5.12;
      ub=5.12;
      dim=30;
      
    case 'F10'
      fobj = @F10;
      lb=-32;
      ub=32;
      dim=30;
      
    case 'F11'
      fobj = @F11;
      lb=-600;
      ub=600;
      dim=30;
      
    case 'F12'
      fobj = @F12;
      lb=-50;
      ub=50;
      dim=30;
      
    case 'F13'
      fobj = @F13;
      lb=-50;
      ub=50;
      dim=30;
      
    case 'F14'
      fobj = @F14;
      lb=-65.536;
      ub=65.536;
      dim=2;
      
    case 'F15'
      fobj = @F15;
      lb=-5;
      ub=5;
      dim=4;
      
    case 'F16'
      fobj = @F16;
      lb=-5;
      ub=5;
      dim=2;
      
    case 'F17'
      fobj = @F17;
      lb=[-5,0];
      ub=;
      dim=2;
      
    case 'F18'
      fobj = @F18;
      lb=-2;
      ub=2;
      dim=2;
      
    case 'F19'
      fobj = @F19;
      lb=0;
      ub=1;
      dim=3;
      
    case 'F20'
      fobj = @F20;
      lb=0;
      ub=1;
      dim=6;   
      
    case 'F21'
      fobj = @F21;
      lb=0;
      ub=10;
      dim=4;   
      
    case 'F22'
      fobj = @F22;
      lb=0;
      ub=10;
      dim=4;   
      
    case 'F23'
      fobj = @F23;
      lb=0;
      ub=10;
      dim=4;            
end

end

% F1

function o = F1(x)
o=sum(x.^2);
end

% F2

function o = F2(x)
o=sum(abs(x))+prod(abs(x));
end

% F3

function o = F3(x)
dim=size(x,2);
o=0;
for i=1:dim
    o=o+sum(x(1:i))^2;
end
end

% F4

function o = F4(x)
o=max(abs(x));
end

% F5

function o = F5(x)
dim=size(x,2);
o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);
end

% F6

function o = F6(x)
o=sum(abs((x+.5)).^2);
end

% F7

function o = F7(x)
dim=size(x,2);
o=sum(.*(x.^4))+rand;
end

% F8

function o = F8(x)
o=sum(-x.*sin(sqrt(abs(x))));
end

% F9

function o = F9(x)
dim=size(x,2);
o=sum(x.^2-10*cos(2*pi.*x))+10*dim;
end

% F10

function o = F10(x)
dim=size(x,2);
o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);
end

% F11

function o = F11(x)
dim=size(x,2);
o=sum(x.^2)/4000-prod(cos(x./sqrt()))+1;
end

% F12

function o = F12(x)
dim=size(x,2);
o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...
(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));
end

% F13

function o = F13(x)
dim=size(x,2);
o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...
((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));
end

% F14

function o = F14(x)
aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...
-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];

for j=1:25
    bS(j)=sum((x'-aS(:,j)).^6);
end
o=(1/500+sum(1./(+bS))).^(-1);
end

% F15

function o = F15(x)
aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
end

% F16

function o = F16(x)
o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);
end

% F17

function o = F17(x)
o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;
end

% F18

function o = F18(x)
o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...
    (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));
end

% F19

function o = F19(x)
aH=;cH=;
pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];
o=0;
for i=1:4
    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end

% F20

function o = F20(x)
aH=;
cH=;
pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...
.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];
o=0;
for i=1:4
    o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end

% F21

function o = F21(x)
aSH=;
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:5
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

% F22

function o = F22(x)
aSH=;
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:7
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

% F23

function o = F23(x)
aSH=;
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];

o=0;
for i=1:10
    o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end

function o=Ufun(x,a,k,m)
o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));
end

三、运行结果


四、备注
  版本:2014a
  

  
来源:51CTO技术博客 https://blog.51cto.com/u_15287606/2983955
页: [1]
查看完整版本: 【优化算法】基于matlab粒子群优化灰狼算法【含Matlab源码 006期】