【路径规划】基于matlab粒子群算法机器人栅格路径规划【...
一、简介首先用栅格法描述机器人工作环境,在此基础上,将机器人路径表示为粒子位置的二进制编码,并以路径长度为适应值,产生初始种群后,再对粒子位置和速度进行更新,经过多次迭代,即可获得从起始点到目标点的一条全局最优路径.
二、源代码
clc;
close all
clear
load('data4.mat')
figure(1)%画障碍图
hold on
S=(S_coo(2)-0.5)*num_shange+(S_coo(1)+0.5);%起点对应的编号
E=(E_coo(2)-0.5)*num_shange+(E_coo(1)+0.5);%终点对应的编号
for i=1:num_shange
for j=1:num_shange
if sign(i,j)==1
y=;
x=;
h=fill(x,y,'k');
set(h,'facealpha',0.5)
end
s=(num2str((i-1)*num_shange+j));
%text(j-0.95,i-0.5,s,'fontsize',6)
end
end
axis()%限制图的边界
plot(S_coo(2),S_coo(1), 'p','markersize', 10,'markerfacecolor','b','MarkerEdgeColor', 'm')%画起点
plot(E_coo(2),E_coo(1),'o','markersize', 10,'markerfacecolor','g','MarkerEdgeColor', 'c')%画终点
set(gca,'YDir','reverse');%图像翻转
for i=1:num_shange
plot(,,'k-');
plot(,,'k-');%画网格线
end
PopSize=20;%种群大小
OldBestFitness=0;%旧的最优适应度值
gen=0;%迭代次数
maxgen =20;%最大迭代次数
c1=0.5;%认知系数
c2=0.7;%社会学习系数
w=0.96;%惯性系数
%%
%初始化路径
w_min=0.5;
w_max=1;
Group=ones(num_point,PopSize);%种群初始化
%最优解
route=Group(:,end)';
index1=find(route==E);
route_lin=route(1:index1);
for i=2:index1
Q1=;
Q2=;
plot(,,'b-.','LineWidth',3);hold on
end
title('粒子群算法-随机路线');
title('粒子群算法-随机路线');
figure(2)
hold on
for i=1:num_shange
for j=1:num_shange
if sign(i,j)==1
y=;
x=;
h=fill(x,y,'k');
set(h,'facealpha',0.5)
end
s=(num2str((i-1)*num_shange+j));
text(j-0.95,i-0.5,s,'fontsize',6)
end
end
axis()%限制图的边界
plot(S_coo(2),S_coo(1), 'p','markersize', 10,'markerfacecolor','b','MarkerEdgeColor', 'm')%画起点
plot(E_coo(2),E_coo(1),'o','markersize', 10,'markerfacecolor','g','MarkerEdgeColor', 'c')%画终点
set(gca,'YDir','reverse');%图像翻转
for i=1:num_shange
plot(,,'k-');
plot(,,'k-');%画网格线
end
for i=2:index1
Q1=;
Q2=;
plot(,,'b-.','LineWidth',3)
end
%初始化粒子速度(即交换序)
Velocity =zeros(num_point,PopSize);
for i=1:PopSize
Velocity(:,i)=round(rand(1,num_point)'*num_point/10); %round取整
end
%计算每个个体对应路径的距离
for i=1:PopSize
EachPathDis(i) = PathDistance(Group(:,i)',E,num_shange);
end
IndivdualBest=Group;%记录各粒子的个体极值点位置,即个体找到的最短路径
IndivdualBestFitness=EachPathDis;%记录最佳适应度值,即个体找到的最短路径的长度
=min(EachPathDis);%找出全局最优值和相应序号
%寻优
while gen < maxgen
w=w_max-(w_max-w_min)*gen/maxgen;
%迭代次数递增
gen = gen +1
%更新全局极值点位置,这里指路径
for i=1:PopSize
GlobalBest(:,i) = Group(:,index);
end
for i = 1:PopSize % 更新各路径总距离
EachPathDis(i) = PathDistance(Group(:,i)',E,num_shange);
end
IsChange = EachPathDis<IndivdualBestFitness;%更新后的距离优于更新前的,记录序号
IndivdualBest(:, find(IsChange)) = Group(:, find(IsChange));%更新个体最佳路径
IndivdualBestFitness = IndivdualBestFitness.*( ~IsChange) + EachPathDis.*IsChange;%更新个体最佳路径距离
= min(IndivdualBestFitness);%更新全局最佳路径,记录相应的序号
if GlobalBestFitness~=OldBestFitness %比较更新前和更新后的适应度值;
OldBestFitness=GlobalBestFitness;%不相等时更新适应度值
best_route=IndivdualBest(:,index)';
end
BestFitness(gen) =GlobalBestFitness;%每一代的最优适应度
end
%最优解
index1=find(best_route==E);
route_lin=best_route(1:index1);
for i=2:index1
Q1=;
Q2=;
plot(,,'r','LineWidth',3)
end
for i=1:PopSize
p_lin=randperm(num_point)';%随机生成1*400不重复的行向量
%% 将起点编号放在首位
index=find(p_lin==S);
lin=p_lin(1);
p_lin(1)=p_lin(index);
p_lin(index)=lin;
Group(:,i)=p_lin;
%%将每个个体进行合理化处理
=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
while flag==1%如处理不成功,则初始化个体,重新处理
p_lin=randperm(num_point)';
index=find(p_lin==S);
lin=p_lin(1);
p_lin(1)=p_lin(index);
p_lin(index)=lin;
Group(:,i)=p_lin;
=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
end
end
%最优解
route=Group(:,end)';
index3=find(route==E);
route_lin1=route(1:index3);
for i=2:index3
Q1=;
Q2=;
plot(,,'c-.','LineWidth',3);hold on
end
for i=1:PopSize
p_lin=randperm(num_point)';%随机生成1*400不重复的行向量
%% 将起点编号放在首位
index=find(p_lin==S);
lin=p_lin(1);
p_lin(1)=p_lin(index);
p_lin(index)=lin;
Group(:,i)=p_lin;
%%将每个个体进行合理化处理
=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
while flag==1%如处理不成功,则初始化个体,重新处理
p_lin=randperm(num_point)';
index=find(p_lin==S);
lin=p_lin(1);
p_lin(1)=p_lin(index);
p_lin(index)=lin;
Group(:,i)=p_lin;
=deal_fun(Group(:,i),num_point,liantong_point,E,num_shange);
end
end
%最优解
route=Group(:,end)';
index2=find(route==E);
route_lin2=route(1:index2);
for i=2:index2
Q1=;
Q2=;
plot(,,'m-.','LineWidth',3);hold on
end
title('粒子群算法-对比路线');
figure(3)
hold on
for i=1:num_shange
for j=1:num_shange
if sign(i,j)==1
y=;
x=;
h=fill(x,y,'k');
set(h,'facealpha',0.5)
end
s=(num2str((i-1)*num_shange+j));
text(j-0.95,i-0.5,s,'fontsize',6)
end
end
axis()%限制图的边界
plot(S_coo(2),S_coo(1), 'p','markersize', 10,'markerfacecolor','b','MarkerEdgeColor', 'm')%画起点
plot(E_coo(2),E_coo(1),'o','markersize', 10,'markerfacecolor','g','MarkerEdgeColor', 'c')%画终点
set(gca,'YDir','reverse');%图像翻转
for i=1:num_shange
plot(,,'k-');
plot(,,'k-');%画网格线
end
for i=2:index1
Q1=;
Q2=;
plot(,,'r','LineWidth',3)
end
title('粒子群算法-最优路线');
%进化曲线
figure(4);
plot(BestFitness);
xlabel('迭代次数')
ylabel('适应度值')
grid on;
title('进化曲线');
disp('粒子群算法-最优路线方案:')
disp(num2str(route_lin))
disp(['起点到终点的距离:',num2str(BestFitness(end))]);
figure(5);
plot(BestFitness*100);
xlabel('迭代次数')
ylabel('适应度值')
grid on;
title('最佳个体适应度值变化趋势');
三、运行结果
四、备注
版本:2014a
页:
[1]