import java.util.random;
/**
* mt19937的java实现
*/
public class mtrandom extends random {
// constants used in the original c implementation
private final static int upper_mask = 0x80000000;
private final static int lower_mask = 0x7fffffff;
private final static int n = 624;
private final static int m = 397;
private final static int magic[] = { 0x0, 0x9908b0df };
private final static int magic_factor1 = 1812433253;
private final static int magic_factor2 = 1664525;
private final static int magic_factor3 = 1566083941;
private final static int magic_mask1 = 0x9d2c5680;
private final static int magic_mask2 = 0xefc60000;
private final static int magic_seed = 19650218;
private final static long default_seed = 5489l;
// internal state
private transient int[] mt;
private transient int mti;
private transient boolean compat = false;
// temporary buffer used during setseed(long)
private transient int[] ibuf;
/**
* the default constructor for an instance of mtrandom. this invokes
* the no-argument constructor for java.util.random which will result
* in the class being initialised with a seed value obtained by calling
* system.currenttimemillis().
*/
public mtrandom() { }
/**
* this version of the constructor can be used to implement identical
* behaviour to the original c code version of this algorithm including
* exactly replicating the case where the seed value had not been set
* prior to calling genrand_int32.
* <p>
* if the compatibility flag is set to true, then the algorithm will be
* seeded with the same default value as was used in the original c
* code. furthermore the setseed() method, which must take a 64 bit
* long value, will be limited to using only the lower 32 bits of the
* seed to facilitate seamless migration of existing c code into java
* where identical behaviour is required.
* <p>
* whilst useful for ensuring backwards compatibility, it is advised
* that this feature not be used unless specifically required, due to
* the reduction in strength of the seed value.
*
* @param compatible compatibility flag for replicating original
* behaviour.
*/
public mtrandom(boolean compatible) {
super(0l);
compat = compatible;
setseed(compat?default_seed:system.currenttimemillis());
}
/**
* this version of the constructor simply initialises the class with
* the given 64 bit seed value. for a better random number sequence
* this seed value should contain as much entropy as possible.
*
* @param seed the seed value with which to initialise this class.
*/
public mtrandom(long seed) {
super(seed);
}
/**
* this version of the constructor initialises the class with the
* given byte array. all the data will be used to initialise this
* instance.
*
* @param buf the non-empty byte array of seed information.
* @throws nullpointerexception if the buffer is null.
* @throws illegalargumentexception if the buffer has zero length.
*/
public mtrandom(byte[] buf) {
super(0l);
setseed(buf);
}
/**
* this version of the constructor initialises the class with the
* given integer array. all the data will be used to initialise
* this instance.
*
* @param buf the non-empty integer array of seed information.
* @throws nullpointerexception if the buffer is null.
* @throws illegalargumentexception if the buffer has zero length.
*/
public mtrandom(int[] buf) {
super(0l);
setseed(buf);
}
// initializes mt[n] with a simple integer seed. this method is
// required as part of the mersenne twister algorithm but need
// not be made public.
private final void setseed(int seed) {
// annoying runtime check for initialisation of internal data
// caused by java.util.random invoking setseed() during init.
// this is unavoidable because no fields in our instance will
// have been initialised at this point, not even if the code
// were placed at the declaration of the member variable.
if (mt == null) mt = new int[n];
// ---- begin mersenne twister algorithm ----
mt[0] = seed;
for (mti = 1; mti < n; mti++) {
mt[mti] = (magic_factor1 * (mt[mti-1] ^ (mt[mti-1] >>> 30)) + mti);
}
// ---- end mersenne twister algorithm ----
}
/**
* this method resets the state of this instance using the 64
* bits of seed data provided. note that if the same seed data
* is passed to two different instances of mtrandom (both of
* which share the same compatibility state) then the sequence
* of numbers generated by both instances will be identical.
* <p>
* if this instance was initialised in 'compatibility' mode then
* this method will only use the lower 32 bits of any seed value
* passed in and will match the behaviour of the original c code
* exactly with respect to state initialisation.
*
* @param seed the 64 bit value used to initialise the random
* number generator state.
*/
public final synchronized void setseed(long seed) {
if (compat) {
setseed((int)seed);
} else {
// annoying runtime check for initialisation of internal data
// caused by java.util.random invoking setseed() during init.
// this is unavoidable because no fields in our instance will
// have been initialised at this point, not even if the code
// were placed at the declaration of the member variable.
if (ibuf == null) ibuf = new int[2];
ibuf[0] = (int)seed;
ibuf[1] = (int)(seed >>> 32);
setseed(ibuf);
}
}
/**
* this method resets the state of this instance using the byte
* array of seed data provided. note that calling this method
* is equivalent to calling "setseed(pack(buf))" and in particular
* will result in a new integer array being generated during the
* call. if you wish to retain this seed data to allow the pseudo
* random sequence to be restarted then it would be more efficient
* to use the "pack()" method to convert it into an integer array
* first and then use that to re-seed the instance. the behaviour
* of the class will be the same in both cases but it will be more
* efficient.
*
* @param buf the non-empty byte array of seed information.
* @throws nullpointerexception if the buffer is null.
* @throws illegalargumentexception if the buffer has zero length.
*/
public final void setseed(byte[] buf) {
setseed(pack(buf));
}
/**
* this method resets the state of this instance using the integer
* array of seed data provided. this is the canonical way of
* resetting the pseudo random number sequence.
*
* @param buf the non-empty integer array of seed information.
* @throws nullpointerexception if the buffer is null.
* @throws illegalargumentexception if the buffer has zero length.
*/
public final synchronized void setseed(int[] buf) {
int length = buf.length;
if (length == 0) throw new illegalargumentexception("seed buffer may not be empty");
// ---- begin mersenne twister algorithm ----
int i = 1, j = 0, k = (n > length ? n : length);
setseed(magic_seed);
for (; k > 0; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >>> 30)) * magic_factor2)) + buf[j] + j;
i++; j++;
if (i >= n) { mt[0] = mt[n-1]; i = 1; }
if (j >= length) j = 0;
}
for (k = n-1; k > 0; k--) {
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >>> 30)) * magic_factor3)) - i;
i++;
if (i >= n) { mt[0] = mt[n-1]; i = 1; }
}
mt[0] = upper_mask; // msb is 1; assuring non-zero initial array
// ---- end mersenne twister algorithm ----
}
/**
* this method forms the basis for generating a pseudo random number
* sequence from this class. if given a value of 32, this method
* behaves identically to the genrand_int32 function in the original
* c code and ensures that using the standard nextint() function
* (inherited from random) we are able to replicate behaviour exactly.
* <p>
* note that where the number of bits requested is not equal to 32
* then bits will simply be masked out from the top of the returned
* integer value. that is to say that:
* <pre>
* mt.setseed(12345);
* int foo = mt.nextint(16) + (mt.nextint(16) << 16);</pre>
* will not give the same result as
* <pre>
* mt.setseed(12345);
* int foo = mt.nextint(32);</pre>
*
* @param bits the number of significant bits desired in the output.
* @return the next value in the pseudo random sequence with the
* specified number of bits in the lower part of the integer.
*/
protected final synchronized int next(int bits) {
// ---- begin mersenne twister algorithm ----
int y, kk;
if (mti >= n) { // generate n words at one time
// in the original c implementation, mti is checked here
// to determine if initialisation has occurred; if not
// it initialises this instance with default_seed (5489).
// this is no longer necessary as initialisation of the
// java instance must result in initialisation occurring
// use the constructor mtrandom(true) to enable backwards
// compatible behaviour.
for (kk = 0; kk < n-m; kk++) {
y = (mt[kk] & upper_mask) | (mt[kk+1] & lower_mask);
mt[kk] = mt[kk+m] ^ (y >>> 1) ^ magic[y & 0x1];
}
for (;kk < n-1; kk++) {
y = (mt[kk] & upper_mask) | (mt[kk+1] & lower_mask);
mt[kk] = mt[kk+(m-n)] ^ (y >>> 1) ^ magic[y & 0x1];
}
y = (mt[n-1] & upper_mask) | (mt[0] & lower_mask);
mt[n-1] = mt[m-1] ^ (y >>> 1) ^ magic[y & 0x1];
mti = 0;
}
y = mt[mti++];
// tempering
y ^= (y >>> 11);
y ^= (y << 7) & magic_mask1;
y ^= (y << 15) & magic_mask2;
y ^= (y >>> 18);
// ---- end mersenne twister algorithm ----
return (y >>> (32-bits));
}
// this is a fairly obscure little code section to pack a
// byte[] into an int[] in little endian ordering.
/**
* this simply utility method can be used in cases where a byte
* array of seed data is to be used to repeatedly re-seed the
* random number sequence. by packing the byte array into an
* integer array first, using this method, and then invoking
* setseed() with that; it removes the need to re-pack the byte
* array each time setseed() is called.
* <p>
* if the length of the byte array is not a multiple of 4 then
* it is implicitly padded with zeros as necessary. for example:
* <pre> byte[] { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }</pre>
* becomes
* <pre> int[] { 0x04030201, 0x00000605 }</pre>
* <p>
* note that this method will not complain if the given byte array
* is empty and will produce an empty integer array, but the
* setseed() method will throw an exception if the empty integer
* array is passed to it.
*
* @param buf the non-null byte array to be packed.
* @return a non-null integer array of the packed bytes.
* @throws nullpointerexception if the given byte array is null.
*/
public static int[] pack(byte[] buf) {
int k, blen = buf.length, ilen = ((buf.length+3) >>> 2);
int[] ibuf = new int[ilen];
for (int n = 0; n < ilen; n++) {
int m = (n+1) << 2;
if (m > blen) m = blen;
for (k = buf[--m]&0xff; (m & 0x3) != 0; k = (k << 8) | buf[--m]&0xff);
ibuf[n] = k;
}
return ibuf;
}
}