[1] Liu, B. 2012. Sentiment analysis and opinion mining. Synthesis lectures on human language technologies 5(1):1–167.
[2] Peng, H. Xu, L. Bing, L. Huang, F. Lu, W. and Si, L.2020. Knowing What, How and Why: A Near Complete Solution for Aspect-Based Sentiment Analysis. In AAAI, 8600–8607.
[3] Li, X. Bing, L. Li, P. and Lam, W. 2019a. A unified model for opinion target extraction and target sentiment prediction. In AAAI, 6714–6721.
[4] Zhao, H. Huang, L. Zhang, R. Lu, Q. and Xue, H. 2020. SpanMlt: A Span-based Multi-Task Learning Framework for Pair-wise Aspect and Opinion Terms Extraction. In ACL, 3239–3248.
[5] Y. Mao, Y. Shen, C. Yu, and L. Cai. 2021. A joint training dual-mrc framework for aspect based sentiment analysis. arXiv preprint arXiv:2101.00816.
[6] 华为云细粒度文本情感分析及应用
[7] 杨扬、佳昊等. 美团BERT的探索和实践.
[8] 任磊,步佳昊等. 情感分析技术在美团的探索与应用.
[9] Bu J, Ren L, Zheng S, et al. ASAP: A Chinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2021.
[10] Xin Li, Lidong Bing, Wenxuan Zhang, and Wai Lam. Exploiting BERT for end-to-end aspect-based sentiment analysis. In W-NUT@EMNLP, 2019.
[11] Xu, L. Li, H. Lu, W. and Bing, L. 2020. Position-Aware Tagging for Aspect Sentiment Triplet Extraction. In EMNLP, 2339–2349.
[12] Chen, S. Wang, Y. Liu, J. and Wang, Y. 2021a. Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extraction. In AAAI.
[13] Yan, H. Dai, J. Qiu, X. Zhang, Z. et al. 2021. A Unified Generative Framework for Aspect-Based Sentiment Analysis. arXiv preprint arXiv:2106.04300.
[14] Wenxuan Zhang, Xin Li, Yang Deng, Lidong Bing, and Wai Lam. 2021. Towards Generative Aspect-Based Sentiment Analysis. In ACL/IJCNLP 2021, 504–510.
[15] Li Yuncong, Fang Wang, Zhang Wenjun, Sheng-hua Zhong, Cunxiang Yin, & Yancheng He. 2021. A More Fine-Grained Aspect-Sentiment-Opinion Triplet Extraction Task. arXiv: Computation and Language.
[16] Devlin, J. Chang, M.-W. Lee, K. and Toutanova, K. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In NAACL-HLT, 4171–4186.
[17] Yue Zhang and Jie Yang. 2018. Chinese ner using lattice lstm. arXiv preprint arXiv:1805.02023.
[18] Li, X. Yan, H. Qiu, X. and Huang, X. 2020. FLAT: Chinese NER Using Flat-Lattice Transformer. arXiv preprint arXiv:2004.11795 .
[19] Tareq Al-Moslmi, Marc Gallofré Ocaña, Andreas L. Opdahl, and Csaba Veres. 2020. Named entity extraction for knowledge graphs: A literature overview. IEEE Access 8 (2020), 32862– 32881.
[20] X. Li, J. Feng, Y. Meng, Q. Han, F. Wu, and J. Li. 2020. A unified MRC framework for named entity recognition. In ACL, 5849–5859.
[21] Jana Strakova, Milan Straka, and Jan Hajic. 2019. Neural architectures for nested ner through linearization. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 5326–5331.
[22] Yequan Wang, Minlie Huang, Li Zhao, and Xiaoyan Zhu. 2016. Attention-based lstm for aspect-level sentiment classification. In Proceedings of the conference on empirical methods in natural language processing, 606–615.
[23] Liang X, Wu L, Li J, et al. R-Drop: Regularized Dropout for Neural Networks[J]. arXiv preprint arXiv:2106.14448, 2021.
[24] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig. 2021. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586.
[25] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang. 2021. Gpt understands, too. arXiv preprint arXiv:2103.10385.
七、术语解释 术语解释 ABSA 细粒度情感分析,Aspect-based Sentiment Analysis NER 命名实体识别,Named Entity Recognition TOWE 面向目标的观点词抽取,Target-oriented Opinion Words Extraction MRC 阅读理解,Machine Reading Comprehension MLM 语言掩码模型,Masked Language Model BERT 基于变换器的双向编码器表示,Bidirectional Encoder Representations from Transformers CRF 条件随机场,Conditional Random Fields LSTM 长短期记忆,Long Short-Term Memory R-drop 基于dropout的正则策略,regularization strategy upon dropout 八、作者介绍
储哲、王璐、润宇、马宁、建林、张琨、刘强,均来自美团到店事业群/平台技术部。 九、招聘信息
美团到店平台技术部的到餐业务数据策略组菜品知识图谱方向主要负责将菜品知识应用到到餐相关业务,使命是为到餐业务提供高效、优质、智能的应用算法解决方案。基于海量的到餐业务数据,应用前沿的实体抽取、关系挖掘、实体表征学习、细粒度情感分析、小样本学习、半监督学习等算法技术,为到餐业务提供算法能力支持。
业务数据策略组菜品知识图谱方向长期招聘自然语言处理算法专家/机器学习算法专家,感兴趣的同学可以将简历发送至hejianlin@meituan.com。 阅读美团技术团队更多技术文章合集
前端 | 算法 | 后端 | 数据 | 安全 | 运维 | iOS | Android | 测试 | 在公众号菜单栏对话框回复【2020年货】、【2019年货】、【2018年货】、【2017年货】等关键词,可查看美团技术团队历年技术文章合集。