评论

收藏

[R语言] R语言入门 Chapter02 | 矩阵与数组

编程语言 编程语言 发布于:2021-12-27 17:19 | 阅读数:352 | 评论:0

不登高山,不知天之高也;不临深溪,不知地之厚也。 ——荀子
这篇文章讲述的是R语言中关于矩阵与数组的相关知识。希望这篇R语言文章对您有所帮助!如果您有想学习的知识或建议,可以给作者留言~
Chapter02 | 矩阵与数组

  • 1、创建矩阵
  • 2、创建数组
  • 3、通过索引访问矩阵
  • 4、通过名称访问矩阵
  • 5、矩阵的运算
  • 6、添加

矩阵是一个按照长方阵列排列的复合或实数集合。向量是一维的,而矩阵是二维的,需要有行和列。
在R软件中,矩阵是有维数的向量,这里的矩阵元素可以是数值型,字符型或者逻辑型,但是每个元素必须都拥有相同的模式,这个和向量是一致的。
R语言中比较出名的矩阵
iris3
state.x77  # 美国五十个州八个指标

  • 使用heatmap()函数可以直接绘制热图
DSC0000.png

矩阵其实就是给向量加一个维度
1、创建矩阵
> x <- 1:20
> x
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
# 定义一个对象m, 用来存储矩阵,第二个参数指定行数,第三个参数用来指定列数,可以省略,直接写4,5
> m <- matrix(x,nrow = 4,ncol = 5)
> m
   [,1] [,2] [,3] [,4] [,5]
[1,]  1  5  9   13   17
[2,]  2  6   10   14   18
[3,]  3  7   11   15   19
[4,]  4  8   12   16   20
# 此为上述代码的简写
> m <- matrix(x,4,5)
> m
   [,1] [,2] [,3] [,4] [,5]
[1,]  1  5  9   13   17
[2,]  2  6   10   14   18
[3,]  3  7   11   15   19
[4,]  4  8   12   16   20
#  行和列必须要满足条件  4行6列会报错,超过了限制
> m <- matrix(x,nrow = 4,ncol = 6)
Warning message:
In matrix(x, nrow = 4, ncol = 6) :
  data length [20] is not a sub-multiple or multiple of the number of columns [6]
# 
> matrix(x,4,4) 
   [,1] [,2] [,3] [,4]
[1,]  1  5  9   13
[2,]  2  6   10   14
[3,]  3  7   11   15
[4,]  4  8   12   16

# 行和列要有一个满足条件,否则会报错  报错原因,因为20不是3的整数倍
> matrix(x,3,3)  
   [,1] [,2] [,3]
[1,]  1  4  7
[2,]  2  5  8
[3,]  3  6  9
Warning message:
In matrix(x, 3, 3) :
  data length [20] is not a sub-multiple or multiple of the number of rows [3]

# 只给一个行或者列会自动分配,矩阵是按照列进行分配的
> matrix(x,4) 
   [,1] [,2] [,3] [,4] [,5]
[1,]  1  5  9   13   17
[2,]  2  6   10   14   18
[3,]  3  7   11   15   19
[4,]  4  8   12   16   20
#  byrow=TURE按行排列,否则按列排列
> m <- matrix(x,nrow = 4,ncol = 5,byrow = TRUE)
> m
   [,1] [,2] [,3] [,4] [,5]
[1,]  1  2  3  4  5
[2,]  6  7  8  9   10
[3,]   11   12   13   14   15
[4,]   16   17   18   19   20
# 修改行和列的名称
> rnames <- c("R1","R2","R3","R4")
> cnames <- c("C1","C2","C3","C4","C5")
> dimnames(m)=list (rnames,cnames)
> m
   C1 C2 C3 C4 C5
R1  1  2  3  4  5
R2  6  7  8  9 10
R3 11 12 13 14 15
R4 16 17 18 19 20
#  dim()函数可以显示向量的维数
> dim(x)
NULL
# 为向量添加函数构建矩阵
> dim(x) <- c(4,5)
> x
   [,1] [,2] [,3] [,4] [,5]
[1,]  1  5  9   13   17
[2,]  2  6   10   14   18
[3,]  3  7   11   15   19
[4,]  4  8   12   16   20
2、创建数组
# 三维数组,可以理解为一个长宽高分别为2,2,5的矩阵
> dim(x) <- c(2,2,5)
> x
, , 1
   [,1] [,2]
[1,]  1  3
[2,]  2  4
, , 2
   [,1] [,2]
[1,]  5  7
[2,]  6  8
, , 3
   [,1] [,2]
[1,]  9   11
[2,]   10   12
, , 4
   [,1] [,2]
[1,]   13   15
[2,]   14   16
, , 5
   [,1] [,2]
[1,]   17   19
[2,]   18   20
# Creating an array
> x <- 1:20
> dim(x) <- c(2,2,5)
> dim1 <- c("A1", "A2")       # 行
> dim2 <- c("B1", "B2", "B3")   # 列
> dim3 <- c("C1", "C2", "C3", "C4") # 给几个值就为几维数组
# dimnames用来定义每个维度的标签
> z <- array(1:24, c(2,3,4), dimnames=list(dim1, dim2, dim3))
> z
, , C1
   B1 B2 B3
A1  1  3  5
A2  2  4  6
, , C2
   B1 B2 B3
A1  7  9 11
A2  8 10 12
, , C3
   B1 B2 B3
A1 13 15 17
A2 14 16 18
, , C4
   B1 B2 B3
A1 19 21 23
A2 20 22 24
3、通过索引访问矩阵
# 4x5的矩阵m
> m <- matrix(x,nrow = 4,ncol = 5)
> m
   [,1] [,2] [,3] [,4] [,5]
[1,]  1  5  9   13   17
[2,]  2  6   10   14   18
[3,]  3  7   11   15   19
[4,]  4  8   12   16   20
# 访问第一行第二列的元素
> m[1,2]
[1] 5
# 访问第一行二,三,四列的元素
> m[1,c(2,3,4)]
[1]  5  9 13
# 访问矩阵一个子集
> m[c(2,4),c(2,3)]
   [,1] [,2]
[1,]  6   10
[2,]  8   12
# 访问第二行
> m[2,]
[1]  2  6 10 14 18
# 访问第二列
> m[,2]
[1] 5 6 7 8
# 访问对应的行
> m[2] 
[1] 2
# 去除第一行再取第二列
> m[-1,2]
[1] 6 7 8
4、通过名称访问矩阵
> dimnames(m)=list (rnames,cnames) 
> m
   C1 C2 C3 C4 C5
R1  1  5  9 13 17
R2  2  6 10 14 18
R3  3  7 11 15 19
R4  4  8 12 16 20
# 此行出错
> m["C1","C2"]
Error in m["C1", "C2"] : subscript out of bounds
# 通过行名列名访问元素
> m["R1","C2"]
[1] 5
# 出错部分
> m["R1"]
[1] NA
> m["C1"]
[1] NA
> m[,"R1"]
Error in m[, "R1"] : subscript out of bounds
# 想要访问列的名字,访问列
> m["R1",]
C1 C2 C3 C4 C5 
 1  5  9 13 17 
# 想要访问行的名字 ,访问行
> m[,"C1"]
R1 R2 R3 R4 
 1  2  3  4
5、矩阵的运算
此部分为矩阵的一些写法以及计算技巧


  • 1、t()函数
实现矩阵的转置,行变列,列变行
> a <- matrix(1:12,nrow = 3,ncol = 4)
> a
   [,1] [,2] [,3] [,4]
[1,]  1  4  7   10
[2,]  2  5  8   11
[3,]  3  6  9   12
#  行列互换
> t(a)
   [,1] [,2] [,3]
[1,]  1  2  3
[2,]  4  5  6
[3,]  7  8  9
[4,]   10   11   12

  • 2、矩阵加减
> a <- b <- matrix(1:12,nrow = 3,ncol = 4)
> a+b
   [,1] [,2] [,3] [,4]
[1,]  2  8   14   20
[2,]  4   10   16   22
[3,]  6   12   18   24
> a-b
   [,1] [,2] [,3] [,4]
[1,]  0  0  0  0
[2,]  0  0  0  0
[3,]  0  0  0  0

  • 3、矩阵相乘
> a <- matrix(1:12,nrow = 3,ncol = 4)
> b <- matrix(1:12,nrow = 4,ncol = 3)
> a%*%b      线代矩阵相乘
   [,1] [,2] [,3]
[1,]   70  158  246
[2,]   80  184  288
[3,]   90  210  330

  • 4、diag()函数
求对角线,diag()函数
> a <- matrix(1:16,nrow = 4,ncol = 4)
> a
   [,1] [,2] [,3] [,4]
[1,]  1  5  9   13
[2,]  2  6   10   14
[3,]  3  7   11   15
[4,]  4  8   12   16
# 返回对角线
> diag(a)
[1]  1  6 11 16
# 对角线矩阵
> diag(diag(a))
   [,1] [,2] [,3] [,4]
[1,]  1  0  0  0
[2,]  0  6  0  0
[3,]  0  0   11  0
[4,]  0  0  0   16
# 产生一个四阶的单位矩阵
> diag(4)
   [,1] [,2] [,3] [,4]
[1,]  1  0  0  0
[2,]  0  1  0  0
[3,]  0  0  1  0
[4,]  0  0  0  1

  • 5、矩阵求逆,逆矩阵
solve()函数
# 先使用rnorm函数随机生成16个随机数,并创建矩阵
> a <- matrix(rnorm(16),4,4)
> a
      [,1]    [,2]     [,3]     [,4]
[1,]  0.19496384 -1.32876618  0.8009854  0.1090159
[2,]  0.83996855 -1.31302374  0.4815483 -0.2333306
[3,] -1.71094415  0.03186264 -0.5280415  2.3790375
[4,] -0.03161188  0.85040187  0.4736652 -0.5227957
# solve()函数可以直接求逆
> solve(a)
       [,1]    [,2]    [,3]   [,4]
[1,] -2.3313965 3.2960835 0.7418279 1.418528
[2,] -1.1575768 1.2092526 0.4392610 1.217815
[3,]  0.1181362 0.8574405 0.4068229 1.493238
[4,] -1.6349574 2.5445791 1.0382558 1.335292

  • 6、解线性方程组
solve()函数还能解线性方程
eg: ax=b
> a <- matrix(rnorm(16),4,4)
> a
       [,1]     [,2]     [,3]    [,4]
[1,]  1.2319870 -0.1801956  0.1470676  0.01413551
[2,] -0.2092927  0.2776381  1.0411766  0.44004831
[3,]  1.3762975 -0.6371769 -1.3026650 -1.20290275
[4,]  0.1149844  0.4075077  0.1193776 -0.21052398
> b <- c(1:4)
> b
[1] 1 2 3 4
> solve(a,b)
[1]  0.894783  3.750849  4.723690 -8.572473

  • 7、eigen()函数
用来求矩阵的特征值与特征向量
> a <- diag(4)+1
> a
   [,1] [,2] [,3] [,4]
[1,]  2  1  1  1
[2,]  1  2  1  1
[3,]  1  1  2  1
[4,]  1  1  1  2
> a.e = eigen(a,symmetric = T)
> a.e
eigen() decomposition
$values
[1] 5 1 1 1
$vectors
   [,1]     [,2]     [,3]     [,4]
[1,] -0.5  0.8660254  0.0000000  0.0000000
[2,] -0.5 -0.2886751 -0.5773503 -0.5773503
[3,] -0.5 -0.2886751 -0.2113249  0.7886751
[4,] -0.5 -0.2886751  0.7886751 -0.2113249
6、添加
colSums(m)      # 求矩阵每一列的和
rowSums(m)      # 求矩阵每一行的和
colMeans(m)       # 求矩阵每一列的平均值
rowMeans(m)       # 求矩阵每一行的平均值

n <- matrix (1:9,3,3)  # 3行3列的矩阵
t <- matrix (2:10,3,3) # 3行3列的矩阵
n*t          # 矩阵的内积
n%*%t          # 矩阵的外积



关注下面的标签,发现更多相似文章