评论

收藏

[PHP] ModelBox开发体验:使用YOLOv3做口罩检测

开发技术 开发技术 发布于:2022-08-22 15:53 | 阅读数:509 | 评论:0

摘要:本案例将在ModelBox中使用YOLO v3模型,实现一个简单的口罩检测应用
本文分享自华为云社区《ModelBox开发体验Day05开发案例-使用YOLOv3做口罩检测》,作者: 孙小北。
      
  • 本案例将使用YOLO v3模型,实现一个简单的口罩检测应用  
  • 代码:https://github.com/sunxiaobei/modelbox_gallery  
  • 代码tag:v1.5 mask_det_yolo3,v1.5.1 mask_det_yolo3_camera
  开发准备

      
  • 开发环境安装和部署,前面环境已完成  
  • 模型训练,ModelArts训练模型  
  • 模型转换,代码模型已完成转换
  应用开发
打开VS Code,连接到ModelBox sdk所在目录或者远程开发板,开始进行口罩检测应用开发。
(1)创建工程
使用create.py创建mask_det_yolo3工程, 将会创建出一个空的ModelBox样例工程。
./create.py -t server -n mask_det_yolo3
git add .
git commit -m 'create mask_det_yolo3'
DSC0000.jpg

(2)创建推理功能单元
AI应用的核心是模型推理部分,我们用如下命令创建推理功能单元,该模块将会创建在工程目录的model文件夹下:
./create.py -t infer -n mask_infer -p mask_det_yolo3
git add .
git commit -m 'create mask_infer'
将资源包中model/mask_infer文件夹中的模型和配置文件拷贝到口罩检测工程的model/mask_infer目录下。其中yolo3_resnet18_mask_det_288x512-rknpu2.rknn是转换好的rknn模型,mask_infer.toml是该模型的ModelBox功能单元配置文件,其内容如下:
# Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved.
[base]
name = "mask_infer"
device = "rknpu"
version = "1.0.0"
description = "your description"
entry = "./yolo3_resnet18_mask_det_288x512-rknpu2.rknn"  # model file path, use relative path
type = "inference"
virtual_type = "rknpu2" # inference engine type: rockchip now support rknpu, rknpu2(if exist)
group_type = "Inference"  # flowunit group attribution, do not change
is_input_contiguous = "false" # rk do not support memory combine, fix, do not change
[input]
[input.input1]
name = "data"
type = "uint8"
device = "rknpu"
[output]
[output.output1]
name = "yolo/output1"
type = "float"
[output.output2]
name = "yolo/output2"
type = "float"
[output.output3]
name = "yolo/output3"
type = "float"
可以看到该模型有3个输出节点,即YOLO v3模型输出的3个feature map,需要从中解码出检测框。
(3)创建后处理功能单元
后处理功能单元负责从模型推理结果中解码出检测框,我们用如下命令创建该功能单元,其将会创建在工程目录的etc/flowunit文件夹下:
./create.py -t python -n yolo3_post -p mask_det_yolo3
将common资源包中etc/flowunit/yolo3_post文件夹中的代码和配置文件拷贝到口罩检测工程的同名目录下,解码过程的核心逻辑在yolo3_utils.py文件中,可以查阅YOLO v3模型细节阅读代码。
(4)创建画图功能单元
得到检测框后可以画在原图上进行输出展示,我们用如下命令创建画图功能单元:
./create.py -t python -n draw_mask_bbox -p mask_det_yolo3
将common资源包中etc/flowunit/draw_mask_bbox文件夹中的代码和配置文件拷贝到口罩检测工程的同名目录下,画图的核心逻辑在draw_mask_bbox.py文件的draw_mask_info函数中:
def draw_mask_info(self, image, bboxes):
 '''在图中画出口罩佩戴信息'''
    thickness = 2
 font_scale = 1
 text_font = cv2.FONT_HERSHEY_SIMPLEX
 for bbox in bboxes:
 label_index = int(bbox[5])
 if self.labels[label_index] != 'head':
 continue
 x_min, y_min, x_max, y_max = bbox[0], bbox[1], bbox[2], bbox[3]
 face_bbox = self.find_max_cover_bbox(
 bbox, bboxes, 'face', self.face_cover_ratio)
 if not face_bbox:
        cv2.rectangle(image, (x_min, y_min),
 (x_max, y_max), (255, 255, 0), thickness)
        cv2.putText(image, 'unknown', (x_min, y_min-20),
 text_font, font_scale, (255, 255, 0), thickness)
 continue
 mask_bbox = self.find_max_cover_bbox(
 face_bbox, bboxes, 'mask', self.mask_cover_ratio)
 if not mask_bbox:
        cv2.putText(image, 'no mask', (x_min, y_min-20),
 text_font, font_scale, (255, 0, 0), thickness)
        cv2.rectangle(image, (x_min, y_min),
 (x_max, y_max), (255, 0, 0), thickness)
 else:
        cv2.putText(image, 'has mask', (x_min, y_min-20),
 text_font, font_scale, (0, 255, 0), thickness)
        cv2.rectangle(image, (x_min, y_min),
 (x_max, y_max), (0, 255, 0), thickness)
        cv2.rectangle(image, (mask_bbox[0], mask_bbox[1]),
 (mask_bbox[2], mask_bbox[3]), (0, 255, 255), thickness)
 return image
针对每个人,该模型会尝试检测出head(头肩部)、face和mask三个检测框。如果face检测框与mask检测框的重合度大于某个阈值,就判为佩戴口罩;否则,就判为没有佩戴口罩;如果没有检测到face检测框,就会显示Unknown,表示未知。
(5)修改流程图
模型推理和配套的功能单元准备好后,我们就可以串联出流程图进行测试了,口罩检测工程默认在graph目录下生成了mask_det_yolo3.toml,我们参考资源包中的graph/mask_det_yolo3.toml将其修改为:
# Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved.
[driver]
dir = ["${HILENS_APP_ROOT}/etc/flowunit",
"${HILENS_APP_ROOT}/etc/flowunit/cpp",
"${HILENS_APP_ROOT}/model",
"${HILENS_MB_SDK_PATH}/flowunit"]
skip-default = true
[profile]
profile=false
trace=false
dir=""
[graph]
format = "graphviz"
graphconf = """digraph mask_det_yolo3 {
  node [shape=Mrecord];
 queue_size = 4
 batch_size = 1
  input1[type=input,flowunit=input,device=cpu,deviceid=0]
 data_source_parser[type=flowunit, flowunit=data_source_parser, device=cpu, deviceid=0]
 video_demuxer[type=flowunit, flowunit=video_demuxer, device=cpu, deviceid=0]
 video_decoder[type=flowunit, flowunit=video_decoder, device=rknpu, deviceid=0, pix_fmt=bgr]
 image_resize[type=flowunit, flowunit=resize, device=rknpu, deviceid=0, width=512, height=288]
 mask_detection[type=flowunit, flowunit=mask_infer, device=rknpu, deviceid=0]
  yolo3_post[type=flowunit, flowunit=yolo3_post, device=cpu, deviceid=0]
 draw_mask_bbox[type=flowunit, flowunit=draw_mask_bbox, device=cpu, deviceid=0]
 video_out[type=flowunit, flowunit=video_out, device=rknpu, deviceid=0]
  input1:input -> data_source_parser:in_data
 data_source_parser:out_video_url -> video_demuxer:in_video_url
 video_demuxer:out_video_packet -> video_decoder:in_video_packet
 video_decoder:out_video_frame -> image_resize:in_image
 image_resize:out_image -> mask_detection:data
 mask_detection:"yolo/output1" -> yolo3_post:in_feat1
 mask_detection:"yolo/output2" -> yolo3_post:in_feat2
 mask_detection:"yolo/output3" -> yolo3_post:in_feat3
 video_decoder:out_video_frame -> draw_mask_bbox:in_image
  yolo3_post:out_data -> draw_mask_bbox:in_bbox
 draw_mask_bbox:out_image -> video_out:in_video_frame
}"""
[flow]
desc = "mask_det_yolo3 run in modelbox-rk-aarch64"
该流程图对于某个视频流,经过视频解码、图像缩放、口罩检测推理、检测框后处理、画图等一系列操作后,将结果保存下来。
然后,参考common资源包中mock_task.toml,将口罩检测工程的任务配置文件bin/mock_task.toml中输入输出部分修改为:
# 任务输入,mock模拟目前仅支持一路rtsp或者本地url
# rtsp摄像头,type = "rtsp", url里面写入rtsp地址
# 其它用"url",比如可以是本地文件地址, 或者httpserver的地址,(摄像头 url = "0")
[input]
type = "url"
url = "../data/mask_test.mp4"
# 任务输出,目前仅支持"webhook", 和本地输出"local"(输出到屏幕,url="0", 输出到rtsp,填写rtsp地址)
# (local 还可以输出到本地文件,这个时候注意,文件可以是相对路径,是相对这个mock_task.toml文件本身)
[output]
type = "local"
url = "../hilens_data_dir/mask_test_result.mp4"
将common资源包中的data/mask_test.mp4测试视频拷贝到口罩检测工程的data目录下,该流程图使用这一视频进行口罩检测,检测结果绘制后保存为hilens_data_dir/mask_test_result.mp4文件。
(6)运行应用
在mask_det_yolo3工程路径下执行build_project.sh进行工程构建:
cd workspace/mask_det_yolo3
./build_project.sh
执行bin/main.sh运行应用(如果运行报错请切换到root账号再运行,本应用需要事先使用pip安装好OpenCV和NumPy),运行结束后在hilens_data_dir目录下生成了mask_test_result.mp4文件,可以下载到PC端查看。
bin/main.sh
git add .
git commit -m 'run mask_det_yolo3'
git push
git tag -a v1.5 -m 'mask_det_yolo3'
git push origin --tags
DSC0001.jpg

(7)实时摄像头
  
# 用于本地mock文件读取任务,脚本中已经配置了IVA_SVC_CONFIG环境变量, 添加了此文件路径
########### 请确定使用linux的路径类型,比如在windows上要用 D:/xxx/xxx  不能用D:\xxx\xxx  ###########
# 任务的参数为一个压缩并转义后的json字符串
# 直接写需要转义双引号, 也可以用 content_file 添加一个json文件,如果content和content_file都存在content会被覆盖
# content_file支持绝对路径或者相对路径,不支持解析环境变量(包括${HILENS_APP_ROOT}、${HILENS_DATA_DIR}等)
[common]
content = "{"param_str":"string param","param_int":10,"param_float":10.5}"
# 任务输入,mock模拟目前仅支持一路rtsp或者本地url
# rtsp摄像头,type = "rtsp", url里面写入rtsp地址
# 其它用"url",比如可以是本地文件地址, 或者httpserver的地址,(摄像头 url = "0")
[input]
type = "url"
# url = "../data/mask_test.mp4" 
url = "0"
# 任务输出,目前仅支持"webhook", 和本地输出"local"(输出到屏幕,url="0", 输出到rtsp,填写rtsp地址)
# (local 还可以输出到本地文件,这个时候注意,文件可以是相对路径,是相对这个mock_task.toml文件本身)
[output]
type = "local"
# url = "../hilens_data_dir/mask_test_result.mp4" 
url = "rtsp://192.168.3.3:8554/outstream"
运行测试
bin/main.sh camera
DSC0002.jpg

小结
本次案例实践口罩识别,通过本次案例的实践对于开发板的使用有了进一步了解,同时也体会到了这个开发板的便捷开发模式,非常值得推荐,希望后续可以体验更多案例,真正落地实践。
参考文献:

      
  • https://developer.huaweicloud.com/develop/aigallery/article/detail?id=0163b46b-34fa-468d-b243-2ef067170d4a  
  • https://modelbox-ai.com/modelbox-book/  
  • https://developer.huaweicloud.com/develop/aigallery/article/detail?id=adc021cb-1c12-49a1-8a0b-f56ce6fb3b25

点击关注,第一时间了解华为云新鲜技术~

关注下面的标签,发现更多相似文章