评论

收藏

[C++] 【优化算法】基于matlab粒子群优化灰狼算法【含Matlab源码 006期】

编程语言 编程语言 发布于:2021-07-05 20:08 | 阅读数:309 | 评论:0

  
一、简介
  灰狼优化算法是最近提出的一种较有竞争力的优化技术.然而,它的位置更新方程存在开发能力强而探索能力弱的缺点.受差分进化和粒子群优化算法的启发,构建一个修改的个体位置更新方程以增强算法的探索能力;受粒子群优化算法的启发,提出一种控制参数a随机动态调整策略.此外,为了提高算法的全局收敛速度,用混沌初始化方法产生初始种群.采用18个高维测试函数进行仿真实验,结果表明:对于绝大多数情形,在相同最大适应度函数评价次数下,本文算法的性能明显优于标准灰狼优化算法.

二、源代码
%%
 
clear all 
clc
close all
 
SearchAgents_no=30; % Number of search agents
 
Function_name='F18'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)
 
Max_iteration=500; % Maximum numbef of iterations
 
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
 
[Best_score,Best_pos,PSOGWO_cg_curve]=PSOGWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
[Alpha_score,Alpha_pos,GWO_cg_curve]=GWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
 
figure('Position',[500 500 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
 
%Draw objective space
subplot(1,2,2);
semilogy(PSOGWO_cg_curve,'Color','r')
hold on
semilogy(GWO_cg_curve,'Color','b')
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');
 
axis tight
grid on
box on
legend('PSOGWO','GWO')
 
display(['The best solution obtained by PSOGWO is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton found by PSOGWO is : ', num2str(Best_score)]);
display(['The best solution obtained by GWO is : ', num2str(Alpha_pos)]);
display(['The best optimal value of the objective funciton found by GWO is : ', num2str(Alpha_score)]);
    
% This function containts full information and implementations of the benchmark 
% functions in Table 1, Table 2, and Table 3 in the paper
% lb is the lower bound: lb=[lb_1,lb_2,...,lb_d]
% up is the uppper bound: ub=[ub_1,ub_2,...,ub_d]
% dim is the number of variables (dimension of the problem)
function [lb,ub,dim,fobj] = Get_Functions_details(F)
switch F
  case 'F1'
    fobj = @F1;
    lb=-100;
    ub=100;
    dim=30;
    
  case 'F2'
    fobj = @F2;
    lb=-10;
    ub=10;
    dim=30;
    
  case 'F3'
    fobj = @F3;
    lb=-100;
    ub=100;
    dim=30;
    
  case 'F4'
    fobj = @F4;
    lb=-100;
    ub=100;
    dim=30;
    
  case 'F5'
    fobj = @F5;
    lb=-30;
    ub=30;
    dim=30;
    
  case 'F6'
    fobj = @F6;
    lb=-100;
    ub=100;
    dim=30;
    
  case 'F7'
    fobj = @F7;
    lb=-1.28;
    ub=1.28;
    dim=30;
    
  case 'F8'
    fobj = @F8;
    lb=-500;
    ub=500;
    dim=30;
    
  case 'F9'
    fobj = @F9;
    lb=-5.12;
    ub=5.12;
    dim=30;
    
  case 'F10'
    fobj = @F10;
    lb=-32;
    ub=32;
    dim=30;
    
  case 'F11'
    fobj = @F11;
    lb=-600;
    ub=600;
    dim=30;
    
  case 'F12'
    fobj = @F12;
    lb=-50;
    ub=50;
    dim=30;
    
  case 'F13'
    fobj = @F13;
    lb=-50;
    ub=50;
    dim=30;
    
  case 'F14'
    fobj = @F14;
    lb=-65.536;
    ub=65.536;
    dim=2;
    
  case 'F15'
    fobj = @F15;
    lb=-5;
    ub=5;
    dim=4;
    
  case 'F16'
    fobj = @F16;
    lb=-5;
    ub=5;
    dim=2;
    
  case 'F17'
    fobj = @F17;
    lb=[-5,0];
    ub=[10,15];
    dim=2;
    
  case 'F18'
    fobj = @F18;
    lb=-2;
    ub=2;
    dim=2;
    
  case 'F19'
    fobj = @F19;
    lb=0;
    ub=1;
    dim=3;
    
  case 'F20'
    fobj = @F20;
    lb=0;
    ub=1;
    dim=6;   
    
  case 'F21'
    fobj = @F21;
    lb=0;
    ub=10;
    dim=4;  
    
  case 'F22'
    fobj = @F22;
    lb=0;
    ub=10;
    dim=4;  
    
  case 'F23'
    fobj = @F23;
    lb=0;
    ub=10;
    dim=4;      
end
 
end
 
% F1
 
function o = F1(x)
o=sum(x.^2);
end
 
% F2
 
function o = F2(x)
o=sum(abs(x))+prod(abs(x));
end
 
% F3
 
function o = F3(x)
dim=size(x,2);
o=0;
for i=1:dim
  o=o+sum(x(1:i))^2;
end
end
 
% F4
 
function o = F4(x)
o=max(abs(x));
end
 
% F5
 
function o = F5(x)
dim=size(x,2);
o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);
end
 
% F6
 
function o = F6(x)
o=sum(abs((x+.5)).^2);
end
 
% F7
 
function o = F7(x)
dim=size(x,2);
o=sum([1:dim].*(x.^4))+rand;
end
 
% F8
 
function o = F8(x)
o=sum(-x.*sin(sqrt(abs(x))));
end
 
% F9
 
function o = F9(x)
dim=size(x,2);
o=sum(x.^2-10*cos(2*pi.*x))+10*dim;
end
 
% F10
 
function o = F10(x)
dim=size(x,2);
o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);
end
 
% F11
 
function o = F11(x)
dim=size(x,2);
o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;
end
 
% F12
 
function o = F12(x)
dim=size(x,2);
o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...
(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));
end
 
% F13
 
function o = F13(x)
dim=size(x,2);
o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...
((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));
end
 
% F14
 
function o = F14(x)
aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...
-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];
 
for j=1:25
  bS(j)=sum((x'-aS(:,j)).^6);
end
o=(1/500+sum(1./([1:25]+bS))).^(-1);
end
 
% F15
 
function o = F15(x)
aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
end
 
% F16
 
function o = F16(x)
o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);
end
 
% F17
 
function o = F17(x)
o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;
end
 
% F18
 
function o = F18(x)
o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...
  (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));
end
 
% F19
 
function o = F19(x)
aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];
pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];
o=0;
for i=1:4
  o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end
 
% F20
 
function o = F20(x)
aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];
cH=[1 1.2 3 3.2];
pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...
.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];
o=0;
for i=1:4
  o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
end
end
 
% F21
 
function o = F21(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
 
o=0;
for i=1:5
  o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end
 
% F22
 
function o = F22(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
 
o=0;
for i=1:7
  o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end
 
% F23
 
function o = F23(x)
aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
 
o=0;
for i=1:10
  o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
end
end
 
function o=Ufun(x,a,k,m)
o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));
end
三、运行结果
DSC0000.png


四、备注
  版本:2014a
  

  

关注下面的标签,发现更多相似文章