估计的代价和实际运行的代价并不等价,因此即便统计是准确的,查询的代价与 MySQL 的估计也会或多或少存在偏差。一个读取更多数据页的查询计划也可能代价更低,例如如果是有序的磁盘 I/O 访问就会更快,又或是结果本身就已经在缓存中。因此,优化器本身并不知道查询会引起多少次 I/O 操作。
MySQL 人为的优化也许与我们期待的不同。我们要的可能是更快的执行时间,而 MySQL 并不是只追求快,它是最求最小化代价。因此,通过代价并不一定科学。
MySQL并不考虑并发中的查询,而这可能会影响查询运行的速度。
MySQL 并不是一直都按代价估计做优化。有时候仅仅是遵循一些规则,例如如果有一个全文匹配条件(MATCH 方法)则使用全文索引。即便是有一个更快的的其他索引和非全文条件查询,MySQL 也不会按更快的方式执行查询。
优化器对于不归它控制的操作的代价并不会考虑,例如执行存储过程或自定义函数。
优化器并不总是能够估计每一个执行计划,有些时候它会忽略一个更优的计划。
MySQL 查询优化器是其中非常复杂的一部分,使用了很多优化方式将查询语句转换成为一个查询执行计划。通常有两种优化方式:静态优化和动态优化。静态优化可以简单地通过检查解析树进行。例如,优化器可以将 WHERE 条件通过数学运算规则转换成一个等式。静态优化与具体的值无关,例如 WHERE条件的常量值。他们执行一次后会一直有效,即便是查询语句使用了不同的值再次执行。可以理解为是“编译时优化”。
相反,动态优化是基于具体的情景的,并依赖于多种因素。例如,WHERE 条件中的值或索引中对应的数据行数。这个过程在每次查询都需要重新估计,可以理解为是“运行时优化”。以下是一些 MySQL 的典型优化方式:
将外联接转换为内联接:一个外联接并不一定需要按外联接查询。有些因素,例如 WHERE 条件和数据表结构可以将外联接查询等价于内联接。MySQL 可以识别这些情况,并重写联合查询。
应用数学等价公式:MySQL 应用数学等价转换简化表达式。可以做到展开和减少常量,排除不可能的情况和常量表达式。例如,表达式(5=5 AND a>5)会精简为(a>5)。同样的,(a 5 AND b=c AND a=5.这些规则对带条件的查询十分有用。
COUNT(),MIN()和 MAX()优化:索引和空值列通常可以帮助 MySQL 优化这些函数。例如,查找二叉树最左侧一列的最小值时,MySQL 可以只请求索引的第一行数据。甚至可以在查询优化阶段完成这个事情,而对于剩余的查询当作是常量值。而对于查询最大值也是一样,只需要读取最后u 一行即可。如果服务端使用了这种优化,可以在 EXPLAIN 中看到“Select tables optimized away”。这意味着优化器将数据表从查询计划中移除并用常量替代了。类似地,COUNT(*)查询在没有指定 WHERE 条件时也可以在某些存储引擎被优化(例如 MyISAM,会一直保存数据表的准确行数)。
评估和精简常量表达式:一旦 MySQL 检测到一个表达式可以精简为一个常量,那在优化阶段就会完成该操作。例如,一个用户定义的变量如果在查询过程中没有变化,就可以转换为常量。令人惊奇的是,在优化阶段,有些你认为是一个查询的语句也会被转换为常量。一个例子就是 索引上的MIN()。这种情况也可以扩展到对主键或独立索引的常量查询。如果 WHERE 条件对这样的索引指定了常量,优化器会知道 MySQL 会在查询开始就查找对应的值。然后,就会在剩余的查询中把这个值当做常量处理。下面是一个例子:
EXPLAIN SELECT film.film_id, film_actor.actor_id
FROM sakila.film
INNER JOIN sakila.film_actor USING(film_id)
WHERE film.film_id = 1;
MySQL 会将这个查询拆分为2步,因此分析结果会有两行。第一步是是在 film 表中查找对应的数据行。由于 是按主键film_id查询的,MySQL 知道只有一行数据。 因此,此时的查询分析结果的 ref 是常量。在第二步中,MySQL 会将 film_id 作为已知值,因此对 film_actor 的查询的 ref 也是常量。其他类似的场景还有 WHERE,USING或 ON 条件中的约束条件是等式。在这个例子中,MySQL 知道 USING条件的 film_id 在查询语句中都是相同的值,这个值必须和 WHERE条件的 film_id 相同。
SELECT film.film_id
FROM sakila.film
INNER JOIN sakila.film_actor USING(film_id)
WHERE film.film_id > 500;
MySQL 会知道 WHERE 条件的约束不仅适用于 film 表,同样也适用于 film_actor 表。但对于其他数据库则未必会有这样的优化效果。
IN 查询比较:对于很多数据库服务器,IN 查询比等价为多个 OR 条件,在逻辑上二者是等效的。但在 MySQL 中不是这样,MySQL会对 IN 查询的列表值进行排序,并使用二分查找法去检查查询值是否在列表中。这会使得算法复杂度从 O(n)降低导 O(log n)。
实际上,MySQL 使用的优化手段比上述列举的多得多,这里没法一一列举。只是需要记住 MySQL 的优化器的复杂性及其智能化程度。因此,应当让优化器发挥其作用,而不是无限优化查询语句直到 MySQL 的优化器没有用武之地。当然,虽然 MySQL 的优化器很聪明,但是它给出的并不一定是最优结果,有些时候你知道最优结果,而 MySQL 未必知道。这种情况下,你可以对查询语句进行优化从而帮助 MySQL 完成优化工作,而有些时候则需要增加查询的提示,或是重写查询,修改数据表设计或增加索引。
以上就是理解MySQL查询优化处理过程的详细内容,更多关于MySQL 查询优化的资料请关注脚本之家其它相关文章!