【图像评价】基于matlab CCF算法的图像质量评价【含Matlab源码 075期】
一、源代码
``
clear all
clc
im = imread(‘1.bmp’);
quality = CCF(im)
function = CCF(im)
%-------------CCF_colorfulness -----------------
imColor = double(im);
R = imColor(:,:,1);
G = imColor(:,:,2);
B = imColor(:,:,3);
RR = log(R+0.00001) - mean2(log(R+0.00001));
GG = log(G+0.00001) - mean2(log(G+0.00001));
BB = log(B+0.00001) - mean2(log(B+0.00001));
alpha = RR-GG;
beta = 0.5*(RR+GG)-BB;
mu_alpha=mean(mean(alpha));
mu_beta=mean(mean(beta));
var_alpha=var(var(alpha));
var_beta=var(var(beta));
CCF_colorfulness=1000*((sqrt(var_alpha+var_beta)+0.3*sqrt(mu_alpha*mu_alpha+mu_beta*mu_beta))/85.59);
%-------------CCF_contrast----------------------
im1=rgb2gray(im);
CCF_contrast = CCFcontrast(im1);
%-------------CCF_FADE--------------------------
CCF_FADE = FADE(im);
%------------ normalization ------------------
CCF_colorfulness=mapminmax(CCF_colorfulness,1,10);
CCF_contrast=mapminmax(CCF_contrast,1,10);
CCF_FADE=10-mapminmax(CCF_FADE,1,10);
% ------------calculate image quality with coefficients---------------------
c=;
quality = c(1)*(CCF_colorfulness) + c(2)*(CCF_contrast) + c(3)*(CCF_FADE)
end
## 二、备注
版本:2014a
页:
[1]