评论

收藏

[C++] 【图像评价】基于matlab CCF算法的图像质量评价【含Matlab源码 075期】

编程语言 编程语言 发布于:2021-07-05 17:38 | 阅读数:521 | 评论:0

  
一、源代码
  ``
clear all
clc
  im = imread(‘1.bmp’);
  quality = CCF(im)
function [quality] = CCF(im)
  %-------------CCF_colorfulness -----------------
imColor = double(im);
R = imColor(:,:,1);
G = imColor(:,:,2);
B = imColor(:,:,3);
RR = log(R+0.00001) - mean2(log(R+0.00001));
GG = log(G+0.00001) - mean2(log(G+0.00001));
BB = log(B+0.00001) - mean2(log(B+0.00001));
alpha = RR-GG;
beta = 0.5*(RR+GG)-BB;
mu_alpha=mean(mean(alpha));
mu_beta=mean(mean(beta));
var_alpha=var(var(alpha));
var_beta=var(var(beta));
CCF_colorfulness=1000*((sqrt(var_alpha+var_beta)+0.3*sqrt(mu_alpha*mu_alpha+mu_beta*mu_beta))/85.59);
  %-------------CCF_contrast----------------------
im1=rgb2gray(im);
CCF_contrast = CCFcontrast(im1);
  %-------------CCF_FADE--------------------------
CCF_FADE = FADE(im);
  %------------ normalization ------------------
CCF_colorfulness=mapminmax(CCF_colorfulness,1,10);
CCF_contrast=mapminmax(CCF_contrast,1,10);
CCF_FADE=10-mapminmax(CCF_FADE,1,10);
  % ------------calculate image quality with coefficients---------------------
c=[0.17593 0.61759 0.33988 ];
quality = c(1)*(CCF_colorfulness) + c(2)*(CCF_contrast) + c(3)*(CCF_FADE)
  end
## 二、备注
版本:2014a
  

  
关注下面的标签,发现更多相似文章