Arce 发表于 2021-7-21 13:43:38

Spark学习--SparkCore实战案例

案例一:词频统计要求:统计Harry Potter.txt文件中出现最多单词前十位
内容样例:

def WordCount(): Unit ={
    val conf=new SparkConf().setMaster("local").setAppName("wordCount")
    val sc=new SparkContext(conf)

    val result=sc.textFile("dataset/HarryPotter.txt")
      .flatMap(item=>item.split(" "))
      .filter(item=>StringUtils.isNotEmpty(item))
      .map(item=>(item,1))
      .reduceByKey((curr,agg)=>curr+agg)
      .sortBy(item=>item._2,ascending = false)
      .map(item=>s"${item._1},${item._2}")
      .take(10)
    result.foreach(println(_))
}
结果:

案例二:日志信息统计要求:统计某一日志文件里出现的IP的次数Top10,最多,最少
内容样例:

def logIpTop10(): Unit ={
    val conf=new SparkConf().setMaster("local").setAppName("sparkCoreTest")
    val sc=new SparkContext(conf)
    sc.setCheckpointDir("checkpoint")
    val result=sc.textFile("dataset/access_log_sample.txt")
      .map(item=>(item.split(" ")(0),1))
      .filter(item=>StringUtils.isNoneEmpty(item._1))
      .reduceByKey((curr,agg)=>curr+agg)
      .cache()

    result.checkpoint()
    val top10=result.sortBy(item => item._2, ascending = false).take(10)
    top10.foreach(println(_))
    val max=result.sortBy(item => item._2, ascending = false).first()
    val min=result.sortBy(item => item._2, ascending = true).first()
    println("max:"+max+" min:"+min)
}结果:


案例三:学生成绩统计要求:统计学生数,课程数,学生平均成绩
内容样例:


def stuGrade(): Unit ={
    val conf=new SparkConf().setMaster("local").setAppName("sparkCoreTest")
    val sc=new SparkContext(conf)
    val stu1=sc.textFile("dataset/stu1.txt")
    val stu2=sc.textFile("dataset/stu2.txt")
    val stu=stu1.union(stu2)


    val stuNum=stu.map(item=>(item.split(",")(0),(item.split(",")(1),item.split(",")(2))))
      .groupByKey()
      .count()

    val courseNum=stu.map(item=>(item.split(",")(1),(item.split(",")(0),item.split(",")(2))))
      .groupByKey()
      .count()

    println("学生数:"+stuNum+" 课程数:"+courseNum)

val result=stu.map(item=>(item.split(",")(0),item.split(",")(2).toDouble))
    .combineByKey(
      createCombiner = (curr: Double) => (curr, 1),
      mergeValue = (curr: (Double, Int), nextValue: Double) => (curr._1 + nextValue, curr._2 + 1),
      mergeCombiners = (curr: (Double, Int), agg: (Double, Int)) => (curr._1 + agg._1, curr._2 + agg._2)
    )
    .map(item=>(item._1,item._2._1/item._2._2))
    .collect()
    result.foreach(println(_))
}结果:


案例四:统计某省PM要求:按年月统计某省PM总数
内容样例:

def pmProcess(): Unit ={
    val conf=new SparkConf().setMaster("local").setAppName("sparkCoreTest")
    val sc=new SparkContext(conf)
    val source = sc.textFile("dataset/pmTest.csv")
    val result = source.map( item => ((item.split(",")(1), item.split(",")(2)), item.split(",")(6)) )
      .filter( item => StringUtils.isNotEmpty(item._2) && ! item._2.equalsIgnoreCase("NA") )
      .map( item => (item._1, item._2.toInt) )
      .reduceByKey( (curr, agg) => curr + agg )
      .sortBy( item => item._2, ascending = false)
      .map(item=> s"${item._1._1},${item._1._2},${item._2}")
      .collect()
    result.foreach(println(_))
}结果:



文档来源:51CTO技术博客https://blog.51cto.com/u_15307704/3134932
页: [1]
查看完整版本: Spark学习--SparkCore实战案例