案例一:词频统计要求:统计Harry Potter.txt文件中出现最多单词前十位
内容样例:
def WordCount(): Unit ={
val conf=new SparkConf().setMaster("local[6]").setAppName("wordCount")
val sc=new SparkContext(conf)
val result=sc.textFile("dataset/HarryPotter.txt")
.flatMap(item=>item.split(" "))
.filter(item=>StringUtils.isNotEmpty(item))
.map(item=>(item,1))
.reduceByKey((curr,agg)=>curr+agg)
.sortBy(item=>item._2,ascending = false)
.map(item=>s"${item._1},${item._2}")
.take(10)
result.foreach(println(_))
} 结果:
案例二:日志信息统计要求:统计某一日志文件里出现的IP的次数Top10,最多,最少
内容样例:
def logIpTop10(): Unit ={
val conf=new SparkConf().setMaster("local[6]").setAppName("sparkCoreTest")
val sc=new SparkContext(conf)
sc.setCheckpointDir("checkpoint")
val result=sc.textFile("dataset/access_log_sample.txt")
.map(item=>(item.split(" ")(0),1))
.filter(item=>StringUtils.isNoneEmpty(item._1))
.reduceByKey((curr,agg)=>curr+agg)
.cache()
result.checkpoint()
val top10=result.sortBy(item => item._2, ascending = false).take(10)
top10.foreach(println(_))
val max=result.sortBy(item => item._2, ascending = false).first()
val min=result.sortBy(item => item._2, ascending = true).first()
println("max:"+max+" min:"+min)
} 结果:
案例三:学生成绩统计要求:统计学生数,课程数,学生平均成绩
内容样例:
def stuGrade(): Unit ={
val conf=new SparkConf().setMaster("local[6]").setAppName("sparkCoreTest")
val sc=new SparkContext(conf)
val stu1=sc.textFile("dataset/stu1.txt")
val stu2=sc.textFile("dataset/stu2.txt")
val stu=stu1.union(stu2)
val stuNum=stu.map(item=>(item.split(",")(0),(item.split(",")(1),item.split(",")(2))))
.groupByKey()
.count()
val courseNum=stu.map(item=>(item.split(",")(1),(item.split(",")(0),item.split(",")(2))))
.groupByKey()
.count()
println("学生数:"+stuNum+" 课程数:"+courseNum)
val result=stu.map(item=>(item.split(",")(0),item.split(",")(2).toDouble))
.combineByKey(
createCombiner = (curr: Double) => (curr, 1),
mergeValue = (curr: (Double, Int), nextValue: Double) => (curr._1 + nextValue, curr._2 + 1),
mergeCombiners = (curr: (Double, Int), agg: (Double, Int)) => (curr._1 + agg._1, curr._2 + agg._2)
)
.map(item=>(item._1,item._2._1/item._2._2))
.collect()
result.foreach(println(_))
} 结果:
案例四:统计某省PM要求:按年月统计某省PM总数
内容样例:
def pmProcess(): Unit ={
val conf=new SparkConf().setMaster("local[6]").setAppName("sparkCoreTest")
val sc=new SparkContext(conf)
val source = sc.textFile("dataset/pmTest.csv")
val result = source.map( item => ((item.split(",")(1), item.split(",")(2)), item.split(",")(6)) )
.filter( item => StringUtils.isNotEmpty(item._2) && ! item._2.equalsIgnoreCase("NA") )
.map( item => (item._1, item._2.toInt) )
.reduceByKey( (curr, agg) => curr + agg )
.sortBy( item => item._2, ascending = false)
.map(item=> s"${item._1._1},${item._1._2},${item._2}")
.collect()
result.foreach(println(_))
} 结果:
|