评论

收藏

[PHP] PHP实现图的邻接矩阵表示及几种简单遍历算法分析

开发技术 开发技术 发布于:2021-08-21 15:29 | 阅读数:227 | 评论:0

本文实例讲述了PHP实现图的邻接矩阵表示及几种简单遍历算法。分享给大家供大家参考,具体如下:
在web开发中图这种数据结构的应用比树要少很多,但在一些业务中也常有出现,下面介绍几种图的寻径算法,并用PHP加以实现.
佛洛依德算法,主要是在顶点集内,按点与点相邻边的权重做遍历,如果两点不相连则权重无穷大,这样通过多次遍历可以得到点到点的最短路径,逻辑上最好理解,实现也较为简单,时间复杂度为O(n^3);
迪杰斯特拉算法,OSPF中实现最短路由所用到的经典算法,djisktra算法的本质是贪心算法,不断的遍历扩充顶点路径集合S,一旦发现更短的点到点路径就替换S中原有的最短路径,完成所有遍历后S便是所有顶点的最短路径集合了.迪杰斯特拉算法的时间复杂度为O(n^2);
克鲁斯卡尔算法,在图内构造最小生成树,达到图中所有顶点联通.从而得到最短路径.时间复杂度为O(N*logN);
<?php
/**
 * PHP 实现图邻接矩阵
 */
class MGraph{
  private $vexs; //顶点数组
  private $arc; //边邻接矩阵,即二维数组
  private $arcData; //边的数组信息
  private $direct; //图的类型(无向或有向)
  private $hasList; //尝试遍历时存储遍历过的结点
  private $queue; //广度优先遍历时存储孩子结点的队列,用数组模仿
  private $infinity = 65535;//代表无穷,即两点无连接,建带权值的图时用,本示例不带权值
  private $primVexs; //prim算法时保存顶点
  private $primArc; //prim算法时保存边
  private $krus;//kruscal算法时保存边的信息
  public function MGraph($vexs, $arc, $direct = 0){
  $this->vexs = $vexs;
  $this->arcData = $arc;
  $this->direct = $direct;
  $this->initalizeArc();
  $this->createArc();
  }
  private function initalizeArc(){
  foreach($this->vexs as $value){
    foreach($this->vexs as $cValue){
    $this->arc[$value][$cValue] = ($value == $cValue ? 0 : $this->infinity);
    }
  }
  }
  //创建图 $direct:0表示无向图,1表示有向图
  private function createArc(){
  foreach($this->arcData as $key=>$value){
    $strArr = str_split($key);
    $first = $strArr[0];
    $last = $strArr[1];
    $this->arc[$first][$last] = $value;
    if(!$this->direct){
    $this->arc[$last][$first] = $value;
    }
  }
  }
  //floyd算法
  public function floyd(){
  $path = array();//路径数组
  $distance = array();//距离数组
  foreach($this->arc as $key=>$value){
    foreach($value as $k=>$v){
    $path[$key][$k] = $k;
    $distance[$key][$k] = $v;
    }
  }
  for($j = 0; $j < count($this->vexs); $j ++){
    for($i = 0; $i < count($this->vexs); $i ++){
    for($k = 0; $k < count($this->vexs); $k ++){
      if($distance[$this->vexs[$i]][$this->vexs[$k]] > $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]){
      $path[$this->vexs[$i]][$this->vexs[$k]] = $path[$this->vexs[$i]][$this->vexs[$j]];
      $distance[$this->vexs[$i]][$this->vexs[$k]] = $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]];
      }
    }
    }
  }
  return array($path, $distance);
  }
  //djikstra算法
  public function dijkstra(){
  $final = array();
  $pre = array();//要查找的结点的前一个结点数组
  $weight = array();//权值和数组
  foreach($this->arc[$this->vexs[0]] as $k=>$v){
    $final[$k] = 0;
    $pre[$k] = $this->vexs[0];
    $weight[$k] = $v;
  }
  $final[$this->vexs[0]] = 1;
  for($i = 0; $i < count($this->vexs); $i ++){
    $key = 0;
    $min = $this->infinity;
    for($j = 1; $j < count($this->vexs); $j ++){
    $temp = $this->vexs[$j];
    if($final[$temp] != 1 && $weight[$temp] < $min){
      $key = $temp;
      $min = $weight[$temp];
    }
    }
    $final[$key] = 1;
    for($j = 0; $j < count($this->vexs); $j ++){
    $temp = $this->vexs[$j];
    if($final[$temp] != 1 && ($min + $this->arc[$key][$temp]) < $weight[$temp]){
      $pre[$temp] = $key;
      $weight[$temp] = $min + $this->arc[$key][$temp];
    }
    }
  }
  return $pre;
  }
  //kruscal算法
  private function kruscal(){
  $this->krus = array();
  foreach($this->vexs as $value){
    $krus[$value] = 0;
  }
  foreach($this->arc as $key=>$value){
    $begin = $this->findRoot($key);
    foreach($value as $k=>$v){
    $end = $this->findRoot($k);
    if($begin != $end){
      $this->krus[$begin] = $end;
    }
    }
  }
  }
  //查找子树的尾结点
  private function findRoot($node){
  while($this->krus[$node] > 0){
    $node = $this->krus[$node];
  }
  return $node;
  }
  //prim算法,生成最小生成树
  public function prim(){
  $this->primVexs = array();
  $this->primArc = array($this->vexs[0]=>0);
  for($i = 1; $i < count($this->vexs); $i ++){
    $this->primArc[$this->vexs[$i]] = $this->arc[$this->vexs[0]][$this->vexs[$i]];
    $this->primVexs[$this->vexs[$i]] = $this->vexs[0];
  }
  for($i = 0; $i < count($this->vexs); $i ++){
    $min = $this->infinity;
    $key;
    foreach($this->vexs as $k=>$v){
    if($this->primArc[$v] != 0 && $this->primArc[$v] < $min){
      $key = $v;
      $min = $this->primArc[$v];
    }
    }
    $this->primArc[$key] = 0;
    foreach($this->arc[$key] as $k=>$v){
    if($this->primArc[$k] != 0 && $v < $this->primArc[$k]){
      $this->primArc[$k] = $v;
      $this->primVexs[$k] = $key;
    }
    }
  }
  return $this->primVexs;
  }
  //一般算法,生成最小生成树
  public function bst(){
  $this->primVexs = array($this->vexs[0]);
  $this->primArc = array();
  next($this->arc[key($this->arc)]);
  $key = NULL;
  $current = NULL;
  while(count($this->primVexs) < count($this->vexs)){
    foreach($this->primVexs as $value){
    foreach($this->arc[$value] as $k=>$v){
      if(!in_array($k, $this->primVexs) && $v != 0 && $v != $this->infinity){
      if($key == NULL || $v < current($current)){
        $key = $k;
        $current = array($value . $k=>$v);
      }
      }
    }
    }
    $this->primVexs[] = $key;
    $this->primArc[key($current)] = current($current);
    $key = NULL;
    $current = NULL;
  }
  return array('vexs'=>$this->primVexs, 'arc'=>$this->primArc);
  }
  //一般遍历
  public function reserve(){
  $this->hasList = array();
  foreach($this->arc as $key=>$value){
    if(!in_array($key, $this->hasList)){
    $this->hasList[] = $key;
    }
    foreach($value as $k=>$v){
    if($v == 1 && !in_array($k, $this->hasList)){
      $this->hasList[] = $k;
    }
    }
  }
  foreach($this->vexs as $v){
    if(!in_array($v, $this->hasList))
    $this->hasList[] = $v;
  }
  return implode($this->hasList);
  }
  //广度优先遍历
  public function bfs(){
  $this->hasList = array();
  $this->queue = array();
  foreach($this->arc as $key=>$value){
    if(!in_array($key, $this->hasList)){
    $this->hasList[] = $key;
    $this->queue[] = $value;
    while(!empty($this->queue)){
      $child = array_shift($this->queue);
      foreach($child as $k=>$v){
      if($v == 1 && !in_array($k, $this->hasList)){
        $this->hasList[] = $k;
        $this->queue[] = $this->arc[$k];
      }
      }
    }
    }
  }
  return implode($this->hasList);
  }
  //执行深度优先遍历
  public function excuteDfs($key){
  $this->hasList[] = $key;
  foreach($this->arc[$key] as $k=>$v){
    if($v == 1 && !in_array($k, $this->hasList))
    $this->excuteDfs($k);
  }
  }
  //深度优先遍历
  public function dfs(){
  $this->hasList = array();
  foreach($this->vexs as $key){
    if(!in_array($key, $this->hasList))
    $this->excuteDfs($key);
  }
  return implode($this->hasList);
  }
  //返回图的二维数组表示
  public function getArc(){
  return $this->arc;
  }
  //返回结点个数
  public function getVexCount(){
  return count($this->vexs);
  }
}
$a = array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i');
$b = array('ab'=>'10', 'af'=>'11', 'bg'=>'16', 'fg'=>'17', 'bc'=>'18', 'bi'=>'12', 'ci'=>'8', 'cd'=>'22', 'di'=>'21', 'dg'=>'24', 'gh'=>'19', 'dh'=>'16', 'de'=>'20', 'eh'=>'7','fe'=>'26');//键为边,值权值
$test = new MGraph($a, $b);
print_r($test->bst());
运行结果:
Array
(
  [vexs] => Array
  (
    [0] => a
    [1] => b
    [2] => f
    [3] => i
    [4] => c
    [5] => g
    [6] => h
    [7] => e
    [8] => d
  )
  [arc] => Array
  (
    [ab] => 10
    [af] => 11
    [bi] => 12
    [ic] => 8
    [bg] => 16
    [gh] => 19
    [he] => 7
    [hd] => 16
  )
)
希望本文所述对大家PHP程序设计有所帮助。

关注下面的标签,发现更多相似文章