评论

收藏

[MySQL] 【原创】日志表设计一例分析

数据库 数据库 发布于:2021-07-04 09:55 | 阅读数:536 | 评论:0

  关于关系表的设计归根结底有两个方面。
  第一,就是完全按照范式理论去设计,一般来说达到第三范式就可以了,或者你可以划分的更细到达更上一层次。比如第四,第五,第六等等。这种设计有自己的可读性很强,但是有一点,在检索数据的时候增加了多张关系表来做关联的开销。
  第二,就是在范式理论上适当的做些反范式,有的东西还是不要太剥离的好。(窄表以及宽表) 这点和软件设计中的紧耦合松耦合理论一致。
  

  下面我就以常用的LOG表来做下演示,其中有两种表的实际,一种是窄表,一种是稍微宽一点的表。
  窄表:log_ytt
mysql> show create table log_ytt;  
+-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Table     | Create Table                                                                               |
+-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| log_ytt | CREATE TABLE `log_ytt` (
  `ids` bigint(20) DEFAULT NULL,
  `log_time` datetime DEFAULT NULL,
  KEY `idx_u1` (`ids`,`log_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 | 
+-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)
  

  表记录数
mysql>  select * from log_ytt where ids > '4875000001';                                          +------------+---------------------+
| ids    | log_time      |
+------------+---------------------+
| 7110000001 | 2014-05-20 21:56:42 | 
| 6300000001 | 2014-05-20 21:56:42 | 
| 6750000001 | 2014-05-20 21:56:42 | 
| 5310000001 | 2014-05-20 21:56:42 | 
| 7200000001 | 2014-05-20 21:56:42 | 
| 7380000001 | 2014-05-20 21:56:42 | 
| 5760000001 | 2014-05-20 21:56:42 | 
| 6930000001 | 2014-05-20 21:56:42 | 
| 6660000001 | 2014-05-20 21:56:42 | 
| 5670000001 | 2014-05-20 21:56:42 | 
| 6210000001 | 2014-05-20 21:56:42 | 
| 5850000001 | 2014-05-20 21:56:42 | 
| 6570000001 | 2014-05-20 21:56:42 | 
| 5580000001 | 2014-05-20 21:56:42 | 
| 5130000001 | 2014-05-20 21:56:42 | 
| 7290000001 | 2014-05-20 21:56:42 | 
| 6390000001 | 2014-05-20 21:56:42 | 
| 5490000001 | 2014-05-20 21:56:42 | 
| 5220000001 | 2014-05-20 21:56:42 | 
| 7560000001 | 2014-05-20 21:56:42 | 
| 7470000001 | 2014-05-20 21:56:42 | 
| 7020000001 | 2014-05-20 21:56:42 | 
| 6840000001 | 2014-05-20 21:56:42 | 
| 6030000001 | 2014-05-20 21:56:42 | 
| 6480000001 | 2014-05-20 21:56:42 | 
| 7650000001 | 2014-05-20 21:56:42 | 
| 5940000001 | 2014-05-20 21:56:42 | 
| 6120000001 | 2014-05-20 21:56:42 | 
| 7740000001 | 2014-05-20 21:56:42 | 
| 5400000001 | 2014-05-20 21:56:42 | 
| 5760000001 | 2014-05-21 03:19:07 | 
| 6840000001 | 2014-05-21 03:19:17 | 
| 7020000001 | 2014-05-21 03:19:32 | 
| 7200000001 | 2014-05-21 03:19:45 | 
| 7110000001 | 2014-05-21 03:19:46 | 
| 7380000001 | 2014-05-21 03:19:48 | 
| 5670000001 | 2014-05-21 03:19:58 | 
| 6930000001 | 2014-05-21 03:19:59 | 
| 6030000001 | 2014-05-21 03:20:00 | 
| 5940000001 | 2014-05-21 03:20:00 | 
| 7290000001 | 2014-05-21 03:20:02 | 
| 6120000001 | 2014-05-21 03:20:09 | 
| 5850000001 | 2014-05-21 03:20:18 | 
| 5580000001 | 2014-05-21 03:20:24 | 
| 6480000001 | 2014-05-21 03:25:05 | 
| 6390000001 | 2014-05-21 03:25:37 | 
| 6210000001 | 2014-05-21 03:25:45 | 
| 7470000001 | 2014-05-21 03:26:14 | 
| 6750000001 | 2014-05-21 03:27:17 | 
| 5310000001 | 2014-05-21 03:27:33 | 
| 5130000001 | 2014-05-21 03:27:34 | 
| 6570000001 | 2014-05-21 03:27:34 | 
| 7560000001 | 2014-05-21 03:27:45 | 
| 5220000001 | 2014-05-21 03:27:45 | 
| 5400000001 | 2014-05-21 03:27:53 | 
| 5490000001 | 2014-05-21 03:27:55 | 
| 6660000001 | 2014-05-21 03:28:07 | 
| 6300000001 | 2014-05-21 03:28:13 | 
| 7740000001 | 2014-05-21 03:28:26 | 
| 7650000001 | 2014-05-21 03:28:37 | 
+------------+---------------------+
60 rows in set (0.00 sec)
  

  

  接下来,我们要检索所有IDS的平均时间。 有以下两种方式:
  第一, 对表进行了两次访问,并且有GROUP BY 操作,不可取。
mysql> select sec_to_time(avg(timestampdiff(second,a.times,b.times)))  as 'running' 
  -> from 
  -> (select ids,min(log_time) as times from log_ytt where 1 group by ids ) as a,
  -> (select ids,max(log_time) as times from log_ytt where 1 group by ids) as b where a.ids = b.ids;
+---------------+
| running     |
+---------------+
| 05:27:08.8333 | 
+---------------+
1 row in set (0.00 sec)
  

  第二,虽然对表进行了最少的访问,但是也有一次GROUP BY 操作。也没办法,表设计如此。
mysql> SELECT SEC_TO_TIME(AVG(times)) AS 'Running' FROM 
  -> (
  -> SELECT TIMESTAMPDIFF(SECOND,MIN(log_time),MAX(log_time)) AS times FROM log_ytt GROUP BY ids
  -> ) AS T;
+---------------+
| Running     |
+---------------+
| 05:27:08.8333 | 
+---------------+
1 row in set (0.00 sec)
  

  宽表:log_ytt_horizontal.
mysql> show create table log_ytt_horizontal;
+------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Table          | Create Table                                                                                                |
+------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| log_ytt_horizontal | CREATE TABLE `log_ytt_horizontal` (
  `ids` bigint(20) NOT NULL,
  `start_time` datetime DEFAULT NULL,
  `end_time` datetime DEFAULT NULL,
  PRIMARY KEY (`ids`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 | 
+------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)
  

  表记录数:
mysql> select * from log_ytt_horizontal;
+------------+---------------------+---------------------+
| ids    | start_time      | end_time      |
+------------+---------------------+---------------------+
| 5130000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:34 | 
| 5220000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:45 | 
| 5310000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:33 | 
| 5400000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:53 | 
| 5490000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:55 | 
| 5580000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:24 | 
| 5670000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:58 | 
| 5760000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:07 | 
| 5850000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:18 | 
| 5940000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:00 | 
| 6030000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:00 | 
| 6120000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:09 | 
| 6210000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:45 | 
| 6300000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:13 | 
| 6390000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:37 | 
| 6480000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:05 | 
| 6570000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:34 | 
| 6660000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:07 | 
| 6750000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:17 | 
| 6840000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:17 | 
| 6930000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:59 | 
| 7020000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:32 | 
| 7110000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:46 | 
| 7200000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:45 | 
| 7290000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:02 | 
| 7380000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:48 | 
| 7470000001 | 2014-05-20 21:56:42 | 2014-05-21 03:26:14 | 
| 7560000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:45 | 
| 7650000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:37 | 
| 7740000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:26 | 
+------------+---------------------+---------------------+
30 rows in set (0.00 sec)
  

  如果对这种稍微冗余一些的表来进行查询,那么对表的访问以及CPU的资源占用都达到了最低。
mysql> select sec_to_time(avg(timestampdiff(second,start_time,end_time))) as 'Running'  from log_ytt_horizontal;
+---------------+
| Running     |
+---------------+
| 05:27:08.8333 | 
+---------------+
1 row in set (0.00 sec)
  


  
关注下面的标签,发现更多相似文章