[1] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for abstractive sentence summarization,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015.
[2] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization with pointer-generator networks,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017.
[3] S. Gehrmann, Y. Deng, and A. M. Rush, “Bottom-up abstractive summarization,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018.
[4] C. Liu, P. Wang, J. Xu, Z. Li, and J. Ye, “Automatic dialogue summary generation for customer service,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019.
[5] S. Chopra, M. Auli, and A. M. Rush, “Abstractive sentence summarization with attentive recurrent neural networks,” in NAACL HLT 2016.
[6] Y. Miao and P. Blunsom, “Language as a latent variable: Discrete generative models for sentence compression,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016.
[7] D. Wang, P. Liu, Y. Zheng, X. Qiu, and X. Huang, “Heterogeneous graph neural networks for extractive document summarization,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020.
[8] M. Zhong, D. Wang, P. Liu, X. Qiu, and X. Huang, “A closer look at data bias in neural extractive summarization models.”
[9] Q. Zhou, N. Yang, F. Wei, S. Huang, M. Zhou, and T. Zhao, “Neural document summarization by jointly learning to score and select sentences,” in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018,
[10] J. Cheng and M. Lapata, “Neural summarization by extracting sentences and words,” in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016
[11] R. Nallapati, F. Zhai, and B. Zhou, “Summarunner: A recurrent neural network based sequence model for extractive summarization of documents,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
[12] H. Pan, J. Zhou, Z. Zhao, Y. Liu, D. Cai, and M. Yang, “Dial2desc: End-to-end dialogue description generation,” CoRR, vol. abs/1811.00185, 2018.
[13] C. Goo and Y. Chen, “Abstractive dialogue summarization with sentence-gated modeling optimized by dialogue acts,” in 2018 IEEE Spoken Language Technology Workshop, SLT 2018
[14] J. Gu, T. Li, Q. Liu, Z. Ling, Z. Su, S. Wei, and X. Zhu, “Speaker-aware BERT for multi-turn response selection in retrieval-based chatbots,” in CIKM ’20
[15] K. Filippova, E. Alfonseca, C. A. Colmenares, L. Kaiser, and O. Vinyals, “Sentence compression by deletion with lstms,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015.
[16] R. Nallapati, B. Zhou, C. N. dos Santos, C ̧. Gu ̈lc ̧ehre, and B. Xiang, “Abstractive text summarization using sequence-to-sequence rnns and beyond,” in Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, CoNLL 2016,
[17] A. Celikyilmaz, A. Bosselut, X. He, and Y. Choi, “Deep communicating agents for abstractive summarization,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics
[18] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for abstractive summarization,” in 6th International Conference on Learning Representations, ICLR 2018
[19] L. Zhao, W. Xu, and J. Guo, “Improving abstractive dialogue summarization with graph structures and topic words,” in Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020,
[20] Y. Zou, L. Zhao, Y. Kang, J. Lin, M. Peng, Z. Jiang, C. Sun, Q. Zhang, X. Huang, and X. Liu, “Topic-oriented spoken dialogue summarization for customer service with saliency-aware topic modeling,” in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021
[21] Q. Zhou, N. Yang, F. Wei, S. Huang, M. Zhou, and T. Zhao, “A joint sentence scoring and selection framework for neural extractive document summarization,” IEEE ACM Trans. Audio Speech Lang. Process., vol. 28, pp. 671–681, 2020.
[22] Y. Chen and M. Bansal, “Fast abstractive summarization with reinforce-selected sentence rewriting,” in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018.
[23] A. Jadhav and V. Rajan, “Extractive summarization with SWAP-NET: sentences and words from alternating pointer networks,” in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018,
[24] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking sentences for extractive summarization with reinforcement learning,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018,
[25] X. Zhang, M. Lapata, F. Wei, and M. Zhou, “Neural latent extractive document summarization,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
[26] Y. Liu, I. Titov, and M. Lapata, “Single document summarization as tree induction,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
[27] J. Xu, Z. Gan, Y. Cheng, and J. Liu, “Discourse-aware neural extractive text summarization,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020
[28] M. Zhong, P. Liu, Y. Chen, D. Wang, X. Qiu, and X. Huang, “Extractive summarization as text matching,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020
[29] Y. Wu, W. Wu, C. Xing, ou, and Z. Li, “Sequential matching network: A new architecture for multi-turn response selection in retrieval-based chatbots,” in ACL 2017,
[30] Z.Zhang,J.Li,P.Zhu,H.Zhao,andG.Liu,“Modelingmulti-turn conversation with deep utterance aggregation,” in COLING 2018,
[31] X. Zhou, L. Li, D. Dong, Y. Liu, Y. Chen, W. X. Zhao, D. Yu, and H. Wu, “Multi-turn response selection for chatbots with deep attention matching network,” in ACL 2018
[32] C. Tao, W. Wu, C. Xu, W. Hu, D. Zhao, and R. Yan, “One time of interaction may not be enough: Go deep with an interaction-over-interaction network for response selection in dialogues,” in ACL 2019
[33] M. Henderson, I. Vulic, D. Gerz, I. Casanueva, P. Budzianowski, S. Coope, G. Spithourakis, T. Wen, N. Mrksic, and P. Su, “Training neural response selection for task-oriented dialogue systems,” in Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019
[34] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
[35] J. Dong and J. Huang, “Enhance word representation for out-of-vocabulary on ubuntu dialogue corpus,” CoRR, vol. abs/1802.02614, 2018.
[36] C. Goo and Y. Chen, “Abstractive dialogue summarization with sentence-gated modeling optimized by dialogue acts,” in 2018 IEEE Spoken Language Technology Workshop, SLT 2018,
[37] Q. Chen, Z. Zhuo, and W. Wang, “BERT for joint intent classification and slot filling,” CoRR, vol. abs/1902.10909, 2019.
[38] L. Song, K. Xu, Y. Zhang, J. Chen, and D. Yu, “ZPR2: joint zero pronoun recovery and resolution using multi-task learning and BERT,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020
[39] S. Chuang, A. H. Liu, T. Sung, and H. Lee, “Improving automatic speech recognition and speech translation via word embedding prediction,” IEEE ACM Trans. Audio Speech Lang. Process., vol. 29, pp. 93–105, 2021.
[40] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in Text Summarization Branches Out. Barcelona, Spain: Association for Computational Linguistics, Jul. 2004, pp. 74–81.
[41] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a method for automatic evaluation of machine translation,” in Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,
[42] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan, “A diversity-promoting objective function for neural conversation models,” in NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics.
[43] Y. Liu and M. Lapata, “Text summarization with pretrained encoders,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019,
[44] I.Sutskever,O.Vinyals,andQ.V.Le,“Sequence-to-sequence learning with neural networks,” in Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014
[45] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” in 3rd International Conference on Learning Representations, ICLR 2015,
[46] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
[47] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21, pp. 140:1–140:67, 2020.
[48] R.Nallapati, F. Zhai, B. Zhou, “SummaRuNNer: A Recurrent Neural Network Based Sequence Model for Extractive Summarization of Documents.” AAAI 2017.
[49] Q. Zhou, N. Yang, F. Wei, S. Huang, M. Zhou, T. Zhao, “Nerual Document Summarization by Jointly Learning to Score and Select Sentences,” ACL 2018.
[50] Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-generator networks. arXiv preprint arXiv:1704.04368, 2017.
[51] Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov and Luke Zettlemoyer. “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension.” ACL (2020).
[52] Zhang, Jingqing, Yao Zhao, Mohammad Saleh and Peter J. Liu. “PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization.” ArXiv abs/1912.08777 (2020): n. pag.
[53] Yuan, Lin and Zhou Yu. “Abstractive Dialog Summarization with Semantic Scaffolds.” ArXiv abs/1910.00825 (2019): n. pag.
[54] Zou, Yicheng, Lujun Zhao, Yangyang Kang, Jun Lin, Minlong Peng, Zhuoren Jiang, Changlong Sun, Qi Zhang, Xuanjing Huang and Xiaozhong Liu. “Topic-Oriented Spoken Dialogue Summarization for Customer Service with Saliency-Aware Topic Modeling.” AAAI (2021).
[55] Brown, Tom B. et al. “Language Models are Few-Shot Learners.” ArXiv abs/2005.14165 (2020): n. pag.
[56] Radford, Alec, Jeff Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever. “Language Models are Unsupervised Multitask Learners.” (2019).
[57] Radford, Alec and Karthik Narasimhan. “Improving Language Understanding by Generative Pre-Training.” (2018).
[58] Mihalcea, Rada and Paul Tarau. “TextRank: Bringing Order into Text.” EMNLP (2004).
[59] Hartigan, J. A. and M. Anthony. Wong. “A k-means clustering algorithm.” (1979).
[60] Comaniciu, Dorin and Peter Meer. “Mean Shift: A Robust Approach Toward Feature Space Analysis.” IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002): 603-619.
[61] Lin, Chin-Yew. “ROUGE: A Package for Automatic Evaluation of Summaries.” ACL 2004 (2004).
[62] Papineni, Kishore, Salim Roukos, Todd Ward and Wei-Jing Zhu. “Bleu: a Method for Automatic Evaluation of Machine Translation.” ACL (2002).
[63] Ishikawa, Kai, Shinichi Ando and Akitoshi Okumura. “Hybrid Text Summarization Method based on the TF Method and the Lead Method.” NTCIR (2001).
[64] Feng, Xiachong, Xiaocheng Feng and Bing Qin. “A Survey on Dialogue Summarization: Recent Advances and New Frontiers.” ArXiv abs/2107.03175 (2021): n. pag.
[65] El-Kassas, Wafaa S., Cherif R. Salama, Ahmed A. Rafea and Hoda Korashy Mohamed. “Automatic text summarization: A comprehensive survey.” Expert Syst. Appl. 165 (2021): 113679.
[66] Nallapati, Ramesh, Bowen Zhou, Cícero Nogueira dos Santos, Çaglar Gülçehre and Bing Xiang. “Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond.” CoNLL (2016).
[67] Shi, Tian, Yaser Keneshloo, Naren Ramakrishnan and Chandan K. Reddy. “Neural Abstractive Text Summarization with Sequence-to-Sequence Models.” ACM Transactions on Data Science 2 (2021): 1 - 37.
[68] Fabbri, Alexander R., Irene Li, Tianwei She, Suyi Li and Dragomir R. Radev. “Multi-News: A Large-Scale Multi-Document Summarization Dataset and Abstractive Hierarchical Model.” ArXiv abs/1906.01749 (2019): n. pag.
[69] Li, Wei and Hai Zhuge. “Abstractive Multi-Document Summarization Based on Semantic Link Network.” IEEE Transactions on Knowledge and Data Engineering 33 (2021): 43-54.
[70] DeYoung, Jay, Iz Beltagy, Madeleine van Zuylen, Bailey Kuehl and Lucy Lu Wang. “MSˆ2: Multi-Document Summarization of Medical Studies.” EMNLP (2021).
[71] Nallapati, Ramesh, Feifei Zhai and Bowen Zhou. “SummaRuNNer: A Recurrent Neural Network Based Sequence Model for Extractive Summarization of Documents.” AAAI (2017).
[72] Narayan, Shashi, Shay B. Cohen and Mirella Lapata. “Ranking Sentences for Extractive Summarization with Reinforcement Learning.” NAACL (2018).
[73] Zhong, Ming, Pengfei Liu, Yiran Chen, Danqing Wang, Xipeng Qiu and Xuanjing Huang. “Extractive Summarization as Text Matching.” ACL (2020).
[74] Zhang, Jingqing, Yao Zhao, Mohammad Saleh and Peter J. Liu. “PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization.” ArXiv abs/1912.08777 (2020): n. pag.