评论

收藏

[JavaScript] Pinctrl基础简介

开发技术 开发技术 发布于:2021-07-11 14:38 | 阅读数:278 | 评论:0

  

  • 原gpio配置框架
之前,所有的gpio操作都是通过gpiolib来实现,常用的api包括:

  staticinline int gpio_request(unsigned gpio, const char *label);
  staticinline int gpio_direction_input(unsigned gpio);
  staticinline int gpio_direction_output(unsigned gpio, int value);
  staticinline void gpio_set_value(unsigned gpio, int value);
  staticinline void gpio_free(unsigned gpio);
在硬件设计确定了某个设备需要使用哪些gpio之后,软件需要做的是(以msm8916平台TP的中断为例):

1)在msm8916-cdp.dsi中定义使用哪个gpio

  i2c@f9924000{
  goodix@5d{
  compatible= "goodix,gt9xx";
  reg= <0x5d>;
  interrupt-parent= <&msmgpio>;
  interrupts= <13 0x2>;
  interrupt-gpios= <&msm_gpio 13 0x00>;
  };
  }
2)在board-8916-gpiomux.c中定义gpio的suspend和active状态

  staticstruct gpiomux_setting atmel_int_act_cfg = {
  .func =GPIOMUX_FUNC_GPIO,
  .drv = GPIOMUX_DRV_2MA,
  .pull = GPIOMUX_PULL_UP,
  };
  staticstruct gpiomux_setting atmel_int_sus_cfg = {
  .func =GPIOMUX_FUNC_GPIO,
  .drv = GPIOMUX_DRV_2MA,
  .pull =GPIOMUX_PULL_NONE,
  };
  staticstruct msm_gpiomux_config msm_touch_configs[] __initdata = {
  .gpio = 13, /*TOUCH IRQ */
  .settings = {
  [GPIOMUX_ACTIVE] =&atmel_int_act_cfg,
  [GPIOMUX_SUSPENDED]= &atmel_int_sus_cfg,
  },
  },

  • PinControl 框架
  Gpiolib方式的缺点在于:当同一套代码对应多个board设计时,需要在board-<soc>-gpiomux.c文件中加宏进行区分。对于不同平台项目,在board-msm8974-gpiomux.c文件中添加了很多宏控。
  pinctrl方式可以避免代码中的这种冗余代码,它将board-<soc>-gpiomux.c文件中的配置信息移到<soc>-pinctrl.dtsi;这样,针对不同project的board设计,分别在各自project的<soc>-pinctrl.dtsi中定义各自的gpio配置信息。
  Pinctrlsubsystem 分为3部分:Pinctrl core、Pinmux和Pinconf。
  pinctrlcore是pincontrol子系统的核心,提供了和devicedriver交互的API;
  pinmux用于实现pin的复用;
  pinconf用于实现pin的配置,如输入/输出、pulldown/pull up、driverstrength等;另外还提供了用于debug的接口。



    • 与gpio子系统的交互

  虽然pinctrl提供了pinctrl_request_gpio()这样的API,但在代码中不可以直接调用pinctrl_request_gpio(),在该函数的定义处也有说明,如下:
  “*This function should *ONLY* be used from gpiolib-based GPIO drivers,
  *as part of their gpio_request() semantics, platforms and individualdrivers
  *shall *NOT* request GPIO pins to be muxed in.”
  当设备驱动申请一个gpio时,仍然需要调用gpio_request(),这里会调用pinctrl_request_gpio()。调用过程如下:
  gpio_request()
  gpiod_request()
  chip->request(chip,gpio_chip_hwgpio(desc));
  在pinctrl_msm.c中,重新定义了chip->request()。
  msm_pinctrl_probe()
  msm_register_gpiochip()
  gc->request= msm_pinctrl_request_gpio;
  这里msm_pinctrl_request_gpio()会调pinctrl_request_gpio();
  同样地,对于pinctrl_free_gpio()、pinctrl_gpio_direction_input()和pinctrl_gpio_direction_output()也有类似说明。
  因此在clientdevice驱动中,申请和释放gpio仍然要调gpio_request()、gpio_free();设置gpio为input/output仍然要调gpio_direction_input()和gpio_direction_output()。



    • Pinctrl注册

  全文以msm8916平台为例进行分析。
  当tlmm加载时,msm_tlmm_v4_probe()最后会调msm_pinctrl_probe(),其中会将pinctrl.dtsi中定义的pinctrlinfo解析出来,并且重新定义chip->request()、chip->free()等函数。
  具体的调用关系如下图所示:
  postcore_initcall(msm_tlmm_v4_drv_register); //Pinctrl-msm-tlmm-v4.c
  msm_tlmm_v4_probe //匹配pinctrl.dtsi定义的compatible
  msm_pinctrl_probe //pinctrl_msm.c
  msm_pinctrl_get_drvdata(dd,pdev); //解析pinctrl.dtsi,保存到dd
  msm_pinctrl_dt_parse_pintype(node,dd);
  msm_pinctrl_dt_parse_pins(node,dd);
  msm_register_gpiochip(dd); //定义gpio_request()、gpio_free()
  gc->request= msm_pinctrl_request_gpio;
  gc->free= msm_pinctrl_free_gpio;
  msm_register_pinctrl(dd);
  dd->pctl_dev= pinctrl_register(ctrl_desc, dd->dev, dd);



    • Pinstates

  一个pinstate对应对pin脚的一种配置,一个pin脚可以配置多个状态,对状态的个数也没有限制。
  state的定义和电源管理关系比较紧密,例如当设备active的时候,我们需要pincontroller将相关的一组pin设定为具体的设备功能,而当设备进入sleep状态的时候,需要pincontroller将相关的一组pin设定为普通GPIO,并精确的控制GPIO状态以便节省系统的功耗。
  Pinctrl-state.h中给出了常用的3种状态:

  • default:

default状态表示设备处于active时的状态,一般在设备驱动的.resume中配置,另外在启动时也会配置pin脚为default状态。


  • idle

idle状态表示系统处于idle时需要配置的pin脚状态,此时系统并没有进入深度休眠。


  • sleep

sleep状态表示系统处于深度休眠时的pin脚状态,一般在设备驱动的.suspend中配置。

当然我们也可以定义任意形式的state,如“on”、“off”等。

  goodix@5d{
  compatible= "goodix,gt9xx";
  reg= <0x5d>;
  pinctrl-names= "gt9xx_int_active", "gt9xx_int_suspend";
  pinctrl-0= <&gt9xx_int_active>;
  pinctrl-1= <&gt9xx_int_sleep>;
  interrupt-parent= <&msm_gpio>;
  interrupts= <13 0x2>;
  ……
  }
  pinctrl-names定义了clientdevice用到的state列表。state有两种标识,一种就是pinctrl-names定义的字符串列表,另外一种就是ID。ID从0开始,依次加一。根据例子中的定义,stateID等于0(名字是"gt9xx_int_active")的state对应pinctrl-0属性,stateID等于1(名字是"gt9xx_int_suspend")的state对应pinctrl-1属性。
  pinctrl-x是一个句柄(phandle)列表,每个句柄指向一个pinconfiguration。



      • Boot时配置default状态


  如果pin只定义了default状态,那么在设备驱动中不需要再对该pin作处理,因为在启动时会自动设为default状态。
  在加载驱动模块时,如果驱动和设备匹配,最终就会调到driver定义的probe函数。在这个过程中,如果使能了pinctrl,而且定义了pin的default状态,就会配置pin脚为该状态。
  具体代码流程如下:
  driver_probe_device(structdevice_driver *drv, struct device *dev)
  really_probe(dev,drv);
  pinctrl_bind_pins(dev);
  if(dev->bus->probe) {
  ret= dev->bus->probe(dev);
  }else if (drv->probe) {
  ret= drv->probe(dev);
  }
  pinctrl_bind_pins(dev)的调用过程如下:
  pinctrl_bind_pins(dev);
  dev->pins->p= devm_pinctrl_get(dev);
  dev->pins->default_state= pinctrl_lookup_state(dev->pins->p,
  PINCTRL_STATE_DEFAULT);
  pinctrl_select_state(dev->pins->p,dev->pins->default_state);
  对于不使用pinctrl的平台,pinctrl_bind_pins(dev)直接返回0;



    • Pingroups

  SOC上需要同时配置一组gpio来支持某些功能,如I2C、SPI、UART、SDC等,在<soc>-pinctrl.dtsi中将这些pin定义为一个group。



      • 配置统一的情况


  一组gpio在各个状态下的配置都相同,这种配置比较常见也比较简单。如i2c,在active和suspend状态下,SDA和SCL的配置都相同:active状态下都是配置为8mA上拉,suspend状态下都配置为2mA和nopull。
  首先在msm8916_pinctrl.c中定义suspend和active状态下的pin脚配置信息,如下:
  pmx_i2c_0{
  /*CLK, DATA */
  qcom,pins= <&gp 7>, <&gp 6>; //使用gpio_6和gpio_7
  qcom,num-grp-pins= <2>; //共两个gpio
  qcom,pin-func= <3>; //复用功能为i2c
  label= "pmx_i2c_0"; //表示同一组
  i2c_0_active:i2c_0_active {
  drive-strength= <8>; /*8 MA */
  bias-pull-up; /* PULL UP */
  };
  i2c_0_sleep:i2c_0_sleep {
  drive-strength= <2>; /* 2 MA */
  bias-disable; /* No PULL */
  };
  };
  然后在msm8916.dtsi中增加pinctrlinfo的引用:
  i2c_0:i2c@78b6000 { /* BLSP1 QUP2 */
  compatible= "qcom,i2c-msm-v2";
  reg-names= "qup_phys_addr", "bam_phys_addr";
  reg= <0x78b6000 0x600>,
  <0x7884000 0x23000>;
  interrupt-names= "qup_irq", "bam_irq";
  interrupts= <0 96 0>, <0 238 0>;
  clocks= <&clock_gcc clk_gcc_blsp1_ahb_clk>,
  <&clock_gcc clk_gcc_blsp1_qup2_i2c_apps_clk>;
  clock-names= "iface_clk", "core_clk";
  qcom,clk-freq-out= <100000>;
  qcom,clk-freq-in = <19200000>;
  pinctrl-names= "i2c_active", "i2c_sleep";
  pinctrl-0= <&i2c_0_active>;
  pinctrl-1= <&i2c_0_sleep>;
  qcom,master-id= <86>;
  };



      • 配置不统一的情况


  如SDC,每个pin脚的active和sleep状态配置各不相同,需要分开设置。
  1)在msm8916_pinctrl.c中分别定义各个pin的suspend和active状态下的配置信息,如下:
  /*SDC pin type */
  sdc:sdc {
  qcom,pin-type-sdc;
  /*0-2 for sdc1 4-6 for sdc2 */
  qcom,num-pins= <6>;
  /*Order of pins */
  /*SDC1: CLK -> 0, CMD -> 1, DATA -> 2 */
  /*SDC2: CLK -> 4, CMD -> 5, DATA -> 6 */
  #qcom,pin-cells= <1>;
  };
  pmx_sdc1_clk{
  qcom,pins= <&sdc 0>;
  qcom,num-grp-pins= <1>;
  label= "sdc1-clk";
  sdc1_clk_on:clk_on {
  bias-disable;/* NO pull */
  drive-strength= <16>; /* 16 MA */
  };
  sdc1_clk_off:clk_off {
  bias-disable;/* NO pull */
  drive-strength= <2>; /* 2 MA */
  };
  };
  pmx_sdc1_cmd{
  qcom,pins= <&sdc 1>;
  qcom,num-grp-pins= <1>;
  label= "sdc1-cmd";
  sdc1_cmd_on:cmd_on {
  bias-pull-up;/* pull up */
  drive-strength= <10>; /* 10 MA */
  };
  sdc1_cmd_off:cmd_off {
  bias-pull-up;/* pull up */
  drive-strength= <2>; /* 2 MA */
  };
  };
  pmx_sdc1_data{
  qcom,pins= <&sdc 2>;
  qcom,num-grp-pins= <1>;
  label= "sdc1-data";
  sdc1_data_on:data_on {
  bias-pull-up;/* pull up */
  drive-strength= <10>; /* 10 MA */
  };
  sdc1_data_off:data_off {
  bias-pull-up;/* pull up */
  drive-strength= <2>; /* 2 MA */
  };
  };
  2)msm8916-cdp.dtsi中作出相应修改:
  &sdhc_1{
  vdd-supply= <&pm8916_l8>;
  qcom,vdd-voltage-level= <2900000 2900000>;
  qcom,vdd-current-level= <200 400000>;
  vdd-io-supply= <&pm8916_l5>;
  qcom,vdd-io-always-on;
  qcom,vdd-io-lpm-sup;
  qcom,vdd-io-voltage-level= <1800000 1800000>;
  qcom,vdd-io-current-level= <200 60000>;
  //qcom,pad-pull-on= <0x0 0x3 0x3>; /* no-pull, pull-up, pull-up */
  //qcom,pad-pull-off= <0x0 0x3 0x3>; /* no-pull, pull-up, pull-up */
  //qcom,pad-drv-on= <0x4 0x4 0x4>; /* 10mA, 10mA, 10mA */
  //qcom,pad-drv-off= <0x0 0x0 0x0>; /* 2mA, 2mA, 2mA */
  pinctrl-names= "active", "sleep";
  pinctrl-0= <&sdc1_clk_on &sdc1_cmd_on &sdc1_data_on>;
  pinctrl-1= <&sdc1_clk_off &sdc1_cmd_off &sdc1_data_off>;
  qcom,nonremovable;
  status= "ok";
  };
  对sdhc_2也是同样的配置。
  另外还有一种情况,对于一组gpio,在不同state下pin_func定义不同的情况,如wifi,在active状态设置为wifi功能,在suspend状态下设置为普通gpio。
  pinctrl@fd511000{
  ...
  pmx-wcnss-5wire-active{
  qcom,pins= <&gp 40>, <&gp 41>, <&gp 42>, <&gp43>.
  <&gp44>;
  qcom,pin-func= <1>;
  qcom,num-grp-pins= <5>;
  label= "wcnss-5wire-active";
  wcnss-5wire-active:wcnss-active {
  drive-strength= <6>; / * 6MA */
  bias-pull-up;
  };
  };
  pmx-wcnss-5wire-suspend{
  qcom,pins= <&gp 40>, <&gp 41>, <&gp 42>, <&gp43>.
  <&gp44>;
  qcom,pin-func= <0>;
  qcom,num-grp-pins= <5>;
  label= "wcnss-5wire-suspend";
  wcnss-5wire-sleep:wcnss-sleep {
  drive-strength= <6>; / * 6MA */
  bias-pull-down;
  };
  };
  };



    • PinctrlAPI

  structpinctrl *devm_pinctrl_get(struct device *dev);
  获取该device对应的pinctrlhandler。
  structpinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char*name);
  查找name指定的pinctrlstate。
  intpinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state);
  配置pin脚为指定的state。

  • Usecase
  下面举例配置tp的中断脚。
  1)在msm8916-pinctrl.dtsi中定义pinctrlinfo:
  &soc{
  tlmm_pinmux:pinctrl@1000000
  gt9xx_int_pin{
  qcom,pins= <&gp 13>;
  qcom,num-grp-pins= <1>; /*num_pins */
  qcom,pin-func= <0>; /*功能选择*/
  label= "gt9xx_int_pin"; /*group name */
  /*active state */
  gt9xx_int_active:active {
  drive-strength= <2>; /*2 MA */
  bias-pull-up;
  };
  /*suspendedstate */
  gt9xx_int_sleep:sleep {
  drive-strength= <2>; /*2 MA */
  bias-disable;
  };
  };
  }
  2)在msm8916-cdp.dtsi中tp的节点中添加引用:
  goodix@5d{
compatible= "goodix,gt9xx";

reg= <0x5d>;

pinctrl-names= "gt9xx_int_active", "gt9xx_int_suspend";

pinctrl-0= <&gt9xx_int_active>;

pinctrl-1= <&gt9xx_int_sleep>;

interrupt-parent= <&msm_gpio>;

interrupts= <13 0x2>;

……

}

  3)在tp驱动中添加配置。
  a.定义pinctrl_info:
#defineGOODIX_PINCTRL_STATE_SLEEP "gt9xx_int_suspend"

#defineGOODIX_PINCTRL_STATE_DEFAULT "gt9xx_int_active"

structgtp_pinctrl_info{

structpinctrl *pinctrl;

structpinctrl_state *gpio_state_active;

structpinctrl_state *gpio_state_suspend;

};

staticstruct gtp_pinctrl_info gt9xx_pctrl;

staticint gtp_pinctrl_init(struct device *dev)

{

gt9xx_pctrl.pinctrl= devm_pinctrl_get(dev);

if(IS_ERR_OR_NULL(gt9xx_pctrl.pinctrl)) {

pr_err("%s:%dGetting pinctrl handle failed\n",

__func__,__LINE__);

return-EINVAL;

}

gt9xx_pctrl.gpio_state_active= pinctrl_lookup_state(

gt9xx_pctrl.pinctrl,

GOODIX_PINCTRL_STATE_DEFAULT);

if(IS_ERR_OR_NULL(gt9xx_pctrl.gpio_state_active)) {

pr_err("%s:%dFailed to get the active state pinctrl handle\n",

__func__,__LINE__);

return-EINVAL;

}

gt9xx_pctrl.gpio_state_suspend= pinctrl_lookup_state(

gt9xx_pctrl.pinctrl,

GOODIX_PINCTRL_STATE_SLEEP);

if(IS_ERR_OR_NULL(gt9xx_pctrl.gpio_state_suspend)) {

pr_err("%s:%dFailed to get the suspend state pinctrl handle\n",

__func__,__LINE__);

return-EINVAL;

}

return0;

}

  b.在probe函数中初始化pinctrl_info,并设置state:
  staticint goodix_ts_probe(struct i2c_client *client, const structi2c_device_id *id)
  {
  goodix_parse_dt(&client->dev,pdata);
  gtp_request_io_port(ts);
  gtp_pinctrl_init(&ts->client->dev);
  pinctrl_select_state(gt9xx_pctrl.pinctrl,gt9xx_pctrl.gpio_state_active);
  ……
  }
  c.在suspend()和resume()中分别设置为activestate和suspendstate:
  staticint goodix_ts_suspend(struct device *dev)
  {
  structgoodix_ts_data *ts = dev_get_drvdata(dev);
  intret = 0, i;
  ret= pinctrl_select_state(gt9xx_pctrl.pinctrl,
  gt9xx_pctrl.gpio_state_suspend);
  if(ret)
  pr_err("%s:%dcannot set pin to suspend state",
  __func__,__LINE__);
  ……
  if(ts->use_irq)
  gtp_irq_disable(ts);
  ……
  returnret;
  }
  staticint goodix_ts_resume(struct device *dev)
  {
  structgoodix_ts_data *ts = dev_get_drvdata(dev);
  intret = 0;
  ret= pinctrl_select_state(gt9xx_pctrl.pinctrl,
  gt9xx_pctrl.gpio_state_active);
  if(ret)
  pr_err("%s:%dcannot set pin to suspend state",
  __func__,__LINE__);
  ……
  if(ts->use_irq)
  gtp_irq_enable(ts);
  ……
  returnret;
  }



  
关注下面的标签,发现更多相似文章