public static String generateOTP(String K,
String C,
String returnDigits,
String crypto){
int codeDigits = Integer.decode(returnDigits).intValue();
String result = null;
// K是密码
// C是产生的随机数
// crypto是加密算法 HMAC-SHA-1
byte[] hash = hmac_sha(crypto, K, C);
// hash为20字节的字符串
// put selected bytes into result int
// 获取hash最后一个字节的低4位,作为选择结果的开始下标偏移
int offset = hash[hash.length - 1] & 0xf;
// 获取4个字节组成一个整数,其中第一个字节最高位为符号位,不获取,使用0x7f
int binary =
((hash[offset] & 0x7f) << 24) |
((hash[offset + 1] & 0xff) << 16) |
((hash[offset + 2] & 0xff) << 8) |
(hash[offset + 3] & 0xff);
// 获取这个整数的后6位(可以根据需要取后8位)
int otp = binary % 1000000;
// 将数字转成字符串,不够6位前面补0
result = Integer.toString(otp);
while (result.length() < codeDigits) {
result = "0" + result;
}
return result;
}
返回的结果就是看到一个数字的动态密码。
3.2、HOTP 基本原理
知道了 OTP 的基本原理,HOTP 只是将其中的参数 C 变成了随机数。
HOTP(K,C) = Truncate(HMAC-SHA-1(K,C))
HOTP:
Generates the OTP for the given count
C 作为一个参数,获取动态密码。
示例:
HOTP 的 python 代码片段:
class HOTP(OTP):
def at(self, count):
"""
Generates the OTP for the given count
@param [Integer] count counter
@returns [Integer] OTP
"""
return self.generate_otp(count)
一般规定 HOTP 的散列函数使用 SHA2,即:基于 SHA-256 or SHA-512 [SHA2] 的散列函数做事件同步验证;
3.3、TOTP 基本原理
TOTP 只是将其中的参数 C 变成了由时间戳产生的数字。
TOTP(K,C) = HOTP(K,C) = Truncate(HMAC-SHA-1(K,C))
不同点是 TOTP 中的 C 是时间戳计算得出。
C = (T - T0) / X;
T 表示当前 Unix 时间戳:
T0 一般取值为 0,也就是 1970 年 1 月 1 日。
因此上式可以简化为:
C = T / X;
X 表示时间步数,也就是说多长时间产生一个动态密码,这个时间间隔就是时间步数 X,系统默认是 30 秒;
例如:
class TOTP(OTP):
def __init__(self, *args, **kwargs):
"""
@option options [Integer] interval (30) the time interval in seconds
for OTP This defaults to 30 which is standard.
"""
self.interval = kwargs.pop('interval', 30)
super(TOTP, self).__init__(*args, **kwargs)
def now(self):
"""
Generate the current time OTP
@return [Integer] the OTP as an integer
"""
return self.generate_otp(self.timecode(datetime.datetime.now()))
def timecode(self, for_time):
i = time.mktime(for_time.timetuple())
return int(i / self.interval)